Dynamixel模块化四足平台

Fikih Muhamad, Jung-Su Kim
{"title":"Dynamixel模块化四足平台","authors":"Fikih Muhamad, Jung-Su Kim","doi":"10.5302/j.icros.2023.23.0101","DOIUrl":null,"url":null,"abstract":"Robotics research has achieved rapid development in the field of quadruped robots. These robots can traverse uneven terrains better than similar sized wheeled robots. However, challenges related to their affordability, complex mechanical design, and sensor placement remain. Regarding affordability, existing quadruped robot platforms utilize custom-made actuators, increasing their cost and exclusivity. Further, their complex mechanical and electrical systems pose challenges in their construction and maintenance. Many existing platforms also lack sufficient space for sensor placement, this adversely affects their performance when navigating uneven terrains that require multiple sensors. To overcome these challenges, this study proposes Dynabot, a small-sized quadruped platform that uses Dynamixel servos and frames on each foot. The main body of the Dynabot is composed of aluminum frames and acrylics. This design aims to improve cost efficiency, ease the assembling and disassembling process, and provide flexibility for sensor placement. To validate the Dynabot’s performance, its abilities to utilize an inverse kinematic planner and a gait planner in its locomotion, and to traverse stairs without falling are demonstrated via both simulations and the real-world experiments. The Unified robot description format of the Dynabot can be accessed at https://url.kr/aq6obp.","PeriodicalId":38644,"journal":{"name":"Journal of Institute of Control, Robotics and Systems","volume":"15 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynabot: Modular Quadruped Platform With Dynamixel\",\"authors\":\"Fikih Muhamad, Jung-Su Kim\",\"doi\":\"10.5302/j.icros.2023.23.0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotics research has achieved rapid development in the field of quadruped robots. These robots can traverse uneven terrains better than similar sized wheeled robots. However, challenges related to their affordability, complex mechanical design, and sensor placement remain. Regarding affordability, existing quadruped robot platforms utilize custom-made actuators, increasing their cost and exclusivity. Further, their complex mechanical and electrical systems pose challenges in their construction and maintenance. Many existing platforms also lack sufficient space for sensor placement, this adversely affects their performance when navigating uneven terrains that require multiple sensors. To overcome these challenges, this study proposes Dynabot, a small-sized quadruped platform that uses Dynamixel servos and frames on each foot. The main body of the Dynabot is composed of aluminum frames and acrylics. This design aims to improve cost efficiency, ease the assembling and disassembling process, and provide flexibility for sensor placement. To validate the Dynabot’s performance, its abilities to utilize an inverse kinematic planner and a gait planner in its locomotion, and to traverse stairs without falling are demonstrated via both simulations and the real-world experiments. The Unified robot description format of the Dynabot can be accessed at https://url.kr/aq6obp.\",\"PeriodicalId\":38644,\"journal\":{\"name\":\"Journal of Institute of Control, Robotics and Systems\",\"volume\":\"15 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Institute of Control, Robotics and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5302/j.icros.2023.23.0101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Institute of Control, Robotics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5302/j.icros.2023.23.0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

机器人研究在四足机器人领域取得了快速发展。这些机器人可以比类似大小的轮式机器人更好地穿越不平坦的地形。然而,与它们的可负担性、复杂的机械设计和传感器放置相关的挑战仍然存在。在可负担性方面,现有的四足机器人平台使用定制的执行器,增加了它们的成本和排他性。此外,它们复杂的机械和电气系统给它们的建造和维护带来了挑战。许多现有的平台也缺乏足够的空间来放置传感器,这对它们在需要多个传感器的不平坦地形上导航时的性能产生了不利影响。为了克服这些挑战,本研究提出了Dynabot,一种小型四足平台,每只脚上都使用Dynamixel伺服系统和框架。Dynabot的主体由铝制框架和亚克力材料组成。本设计旨在提高成本效率,简化组装和拆卸过程,并为传感器的放置提供灵活性。为了验证Dynabot的性能,通过仿真和现实世界的实验证明了它在运动中利用逆运动学规划器和步态规划器的能力,以及在不摔倒的情况下爬楼梯的能力。Dynabot的统一机器人描述格式可在https://url.kr/aq6obp上访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynabot: Modular Quadruped Platform With Dynamixel
Robotics research has achieved rapid development in the field of quadruped robots. These robots can traverse uneven terrains better than similar sized wheeled robots. However, challenges related to their affordability, complex mechanical design, and sensor placement remain. Regarding affordability, existing quadruped robot platforms utilize custom-made actuators, increasing their cost and exclusivity. Further, their complex mechanical and electrical systems pose challenges in their construction and maintenance. Many existing platforms also lack sufficient space for sensor placement, this adversely affects their performance when navigating uneven terrains that require multiple sensors. To overcome these challenges, this study proposes Dynabot, a small-sized quadruped platform that uses Dynamixel servos and frames on each foot. The main body of the Dynabot is composed of aluminum frames and acrylics. This design aims to improve cost efficiency, ease the assembling and disassembling process, and provide flexibility for sensor placement. To validate the Dynabot’s performance, its abilities to utilize an inverse kinematic planner and a gait planner in its locomotion, and to traverse stairs without falling are demonstrated via both simulations and the real-world experiments. The Unified robot description format of the Dynabot can be accessed at https://url.kr/aq6obp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
128
期刊最新文献
Proposal of MRFScore and a Regression Model for Identification of Music Relationship Indicator Mixed Reality-based Structure Placement Verification System Using AR Marker Optimal Parameter Estimation for Topological Descriptor Based Sonar Image Matching in Autonomous Underwater Robots 3D Space Object and Road Detection for Autonomous Vehicles Using Monocular Camera Images and Deep Learning Algorithms Optimization Methods for Non-linear Least Squares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1