{"title":"推进数字经济的复合神经网络经济管理模型设计","authors":"Ke Shang, Muhammad Asif","doi":"10.4018/joeuc.330678","DOIUrl":null,"url":null,"abstract":"The rapid progress of the digital economy has brought forth a myriad of complexities in economic governance, particularly in the domains of stocks and network finance. The authors propose the exploration of an innovative economic management model founded on the compound neural network framework. Central to this approach is the utilization of the deep bidirectional long and short-term memory neural network model (Bi-LSTM) as the primary instrument for predictive analysis, complemented by the refinement and enhancement provided by the Markov chain model. Through comparative analysis of experiments, it is found that although the forecast price of this model has a certain lag, it has a more accurate judgment than other prediction models, and the accuracy and recall rate reach 87.66% and 86.31%. At the same time, the error evaluation index R2 is very close to the upper limit 1 of the index, and the mean absolute error MAE Hill inequality coefficient; TIC root; mean square error; RMSE; and symmetric mean percentage error (SMAPE) are 0.2654, 0.0124, 0.3481, and 0.3531, respectively.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":"328 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Design of a Compound Neural Network-Based Economic Management Model for Advancing the Digital Economy\",\"authors\":\"Ke Shang, Muhammad Asif\",\"doi\":\"10.4018/joeuc.330678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid progress of the digital economy has brought forth a myriad of complexities in economic governance, particularly in the domains of stocks and network finance. The authors propose the exploration of an innovative economic management model founded on the compound neural network framework. Central to this approach is the utilization of the deep bidirectional long and short-term memory neural network model (Bi-LSTM) as the primary instrument for predictive analysis, complemented by the refinement and enhancement provided by the Markov chain model. Through comparative analysis of experiments, it is found that although the forecast price of this model has a certain lag, it has a more accurate judgment than other prediction models, and the accuracy and recall rate reach 87.66% and 86.31%. At the same time, the error evaluation index R2 is very close to the upper limit 1 of the index, and the mean absolute error MAE Hill inequality coefficient; TIC root; mean square error; RMSE; and symmetric mean percentage error (SMAPE) are 0.2654, 0.0124, 0.3481, and 0.3531, respectively.\",\"PeriodicalId\":49029,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"328 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.330678\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.330678","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
The Design of a Compound Neural Network-Based Economic Management Model for Advancing the Digital Economy
The rapid progress of the digital economy has brought forth a myriad of complexities in economic governance, particularly in the domains of stocks and network finance. The authors propose the exploration of an innovative economic management model founded on the compound neural network framework. Central to this approach is the utilization of the deep bidirectional long and short-term memory neural network model (Bi-LSTM) as the primary instrument for predictive analysis, complemented by the refinement and enhancement provided by the Markov chain model. Through comparative analysis of experiments, it is found that although the forecast price of this model has a certain lag, it has a more accurate judgment than other prediction models, and the accuracy and recall rate reach 87.66% and 86.31%. At the same time, the error evaluation index R2 is very close to the upper limit 1 of the index, and the mean absolute error MAE Hill inequality coefficient; TIC root; mean square error; RMSE; and symmetric mean percentage error (SMAPE) are 0.2654, 0.0124, 0.3481, and 0.3531, respectively.
期刊介绍:
The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.