{"title":"利用遥感与无人机的力量:黄土高原土壤流失量估算的对比分析","authors":"Narges Kariminejad, Mohammad Kazemi Kazemi Garajeh, Mohsen Hosseinalizadeh, Foroogh Golkar, Hamid Reza Pourghasemi","doi":"10.3390/drones7110659","DOIUrl":null,"url":null,"abstract":"This study explored the innovative use of multiple remote sensing satellites and unmanned aerial vehicles to calculate soil losses in the Loess Plateau of Iran. This finding emphasized the importance of using advanced technologies to develop accurate and efficient soil erosion assessment techniques. Accordingly, this study developed an approach to compare sinkholes and gully heads in hilly regions on the Loess Plateau of northeast Iran using convolutional neural network (CNN or ConvNet). This method involved coupling data from UAV, Sentinel-2, and SPOT-6 satellite data. The soil erosion computed using UAV data showed AUC values of 0.9247 and 0.9189 for the gully head and the sinkhole, respectively. The use of SPOT-6 data in gully head and sinkhole computations showed AUC values of 0.9105 and 0.9123, respectively. The AUC values were 0.8978 and 0.9001 for the gully head and the sinkhole using Sentinel-2, respectively. Comparison of the results from the calculated UAV, SPOT-6, and Sentinel-2 data showed that the UAV had the highest accuracy for calculating sinkhole and gully head soil features, although Sentinel-2 and SPOT-6 showed good results. Overall, the combination of multiple remote sensing satellites and UAVs offers improved accuracy, timeliness, cost effectiveness, accessibility, and long-term monitoring capabilities, making it a powerful approach for calculating soil loss in the Loess Plateau of Iran.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"39 28","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing the Power of Remote Sensing and Unmanned Aerial Vehicles: A Comparative Analysis for Soil Loss Estimation on the Loess Plateau\",\"authors\":\"Narges Kariminejad, Mohammad Kazemi Kazemi Garajeh, Mohsen Hosseinalizadeh, Foroogh Golkar, Hamid Reza Pourghasemi\",\"doi\":\"10.3390/drones7110659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explored the innovative use of multiple remote sensing satellites and unmanned aerial vehicles to calculate soil losses in the Loess Plateau of Iran. This finding emphasized the importance of using advanced technologies to develop accurate and efficient soil erosion assessment techniques. Accordingly, this study developed an approach to compare sinkholes and gully heads in hilly regions on the Loess Plateau of northeast Iran using convolutional neural network (CNN or ConvNet). This method involved coupling data from UAV, Sentinel-2, and SPOT-6 satellite data. The soil erosion computed using UAV data showed AUC values of 0.9247 and 0.9189 for the gully head and the sinkhole, respectively. The use of SPOT-6 data in gully head and sinkhole computations showed AUC values of 0.9105 and 0.9123, respectively. The AUC values were 0.8978 and 0.9001 for the gully head and the sinkhole using Sentinel-2, respectively. Comparison of the results from the calculated UAV, SPOT-6, and Sentinel-2 data showed that the UAV had the highest accuracy for calculating sinkhole and gully head soil features, although Sentinel-2 and SPOT-6 showed good results. Overall, the combination of multiple remote sensing satellites and UAVs offers improved accuracy, timeliness, cost effectiveness, accessibility, and long-term monitoring capabilities, making it a powerful approach for calculating soil loss in the Loess Plateau of Iran.\",\"PeriodicalId\":36448,\"journal\":{\"name\":\"Drones\",\"volume\":\"39 28\",\"pages\":\"0\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones7110659\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7110659","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Harnessing the Power of Remote Sensing and Unmanned Aerial Vehicles: A Comparative Analysis for Soil Loss Estimation on the Loess Plateau
This study explored the innovative use of multiple remote sensing satellites and unmanned aerial vehicles to calculate soil losses in the Loess Plateau of Iran. This finding emphasized the importance of using advanced technologies to develop accurate and efficient soil erosion assessment techniques. Accordingly, this study developed an approach to compare sinkholes and gully heads in hilly regions on the Loess Plateau of northeast Iran using convolutional neural network (CNN or ConvNet). This method involved coupling data from UAV, Sentinel-2, and SPOT-6 satellite data. The soil erosion computed using UAV data showed AUC values of 0.9247 and 0.9189 for the gully head and the sinkhole, respectively. The use of SPOT-6 data in gully head and sinkhole computations showed AUC values of 0.9105 and 0.9123, respectively. The AUC values were 0.8978 and 0.9001 for the gully head and the sinkhole using Sentinel-2, respectively. Comparison of the results from the calculated UAV, SPOT-6, and Sentinel-2 data showed that the UAV had the highest accuracy for calculating sinkhole and gully head soil features, although Sentinel-2 and SPOT-6 showed good results. Overall, the combination of multiple remote sensing satellites and UAVs offers improved accuracy, timeliness, cost effectiveness, accessibility, and long-term monitoring capabilities, making it a powerful approach for calculating soil loss in the Loess Plateau of Iran.