在任意基材上进行高保真纳米加工的近乎零粘附的完整晶圆级电阻转移印刷

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2023-11-03 DOI:10.1088/2631-7990/ad01fe
Zhiwen Shu, Bo Feng, Peng Liu, Lei Chen, Huikang Liang, Yiqin Chen, Jianwu Yu, Huigao Duan
{"title":"在任意基材上进行高保真纳米加工的近乎零粘附的完整晶圆级电阻转移印刷","authors":"Zhiwen Shu, Bo Feng, Peng Liu, Lei Chen, Huikang Liang, Yiqin Chen, Jianwu Yu, Huigao Duan","doi":"10.1088/2631-7990/ad01fe","DOIUrl":null,"url":null,"abstract":"Abstract There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates, so as to meet the fast-growing need for broad applications in nanoelectronics, nanophotonics, and flexible optoelectronics. Existing direct-lithography methods are difficult to use on flexible, nonplanar, and biocompatible surfaces. Therefore, this fabrication is usually accomplished by nanotransfer printing. However, large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution, uniformity, adhesivity, and integrity of the nanostructures formed by direct transfer. Here, we proposed a resist-based transfer strategy enabled by near-zero adhesion, which was achieved by molecular modification to attain a critical surface energy interval. This approach enabled the intact transfer of wafer-scale, ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling, thereby facilitating the in situ fabrication of nanostructures for functional devices. Applying this approach, fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities, nanoplasmonic structures with ∼10 nm resolution, and MoS 2 -based devices with excellent performance was demonstrated on specific substrates. These results collectively demonstrated the high stability, reliability, and throughput of our strategy for optical and electronic device applications.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-zero-adhesion-enabled intact wafer-scale resist-transfer printing for high-fidelity nanofabrication on arbitrary substrates\",\"authors\":\"Zhiwen Shu, Bo Feng, Peng Liu, Lei Chen, Huikang Liang, Yiqin Chen, Jianwu Yu, Huigao Duan\",\"doi\":\"10.1088/2631-7990/ad01fe\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates, so as to meet the fast-growing need for broad applications in nanoelectronics, nanophotonics, and flexible optoelectronics. Existing direct-lithography methods are difficult to use on flexible, nonplanar, and biocompatible surfaces. Therefore, this fabrication is usually accomplished by nanotransfer printing. However, large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution, uniformity, adhesivity, and integrity of the nanostructures formed by direct transfer. Here, we proposed a resist-based transfer strategy enabled by near-zero adhesion, which was achieved by molecular modification to attain a critical surface energy interval. This approach enabled the intact transfer of wafer-scale, ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling, thereby facilitating the in situ fabrication of nanostructures for functional devices. Applying this approach, fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities, nanoplasmonic structures with ∼10 nm resolution, and MoS 2 -based devices with excellent performance was demonstrated on specific substrates. These results collectively demonstrated the high stability, reliability, and throughput of our strategy for optical and electronic device applications.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad01fe\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad01fe","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

为了满足纳米电子学、纳米光子学和柔性光电子学等领域快速发展的广泛应用需求,迫切需要一种新颖的工艺来将不同功能的纳米结构集成到特定的衬底上。现有的直接光刻方法很难在柔性、非平面和生物相容性表面上使用。因此,这种制造通常是通过纳米转移印刷完成的。然而,非常规衬底的多尺度纳米结构的大规模集成仍然具有挑战性,因为直接转移形成的纳米结构的分辨率、均匀性、粘附性和完整性往往限制了制造产量和质量。在这里,我们提出了一种基于电阻的转移策略,通过分子修饰来实现接近零的粘附,从而达到临界表面能区间。这种方法能够将晶圆级、超薄抗蚀纳米膜完整地转移到任意基片上,减轻了开裂和起皱,从而促进了用于功能器件的纳米结构的原位制造。应用这种方法,在特定的衬底上证明了具有增强功能的三维堆叠多层结构,具有~ 10纳米分辨率的纳米等离子体结构和具有优异性能的MoS 2基器件。这些结果共同证明了我们的战略在光学和电子器件应用中的高稳定性、可靠性和吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-zero-adhesion-enabled intact wafer-scale resist-transfer printing for high-fidelity nanofabrication on arbitrary substrates
Abstract There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates, so as to meet the fast-growing need for broad applications in nanoelectronics, nanophotonics, and flexible optoelectronics. Existing direct-lithography methods are difficult to use on flexible, nonplanar, and biocompatible surfaces. Therefore, this fabrication is usually accomplished by nanotransfer printing. However, large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution, uniformity, adhesivity, and integrity of the nanostructures formed by direct transfer. Here, we proposed a resist-based transfer strategy enabled by near-zero adhesion, which was achieved by molecular modification to attain a critical surface energy interval. This approach enabled the intact transfer of wafer-scale, ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling, thereby facilitating the in situ fabrication of nanostructures for functional devices. Applying this approach, fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities, nanoplasmonic structures with ∼10 nm resolution, and MoS 2 -based devices with excellent performance was demonstrated on specific substrates. These results collectively demonstrated the high stability, reliability, and throughput of our strategy for optical and electronic device applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function Holistic and localized preparation methods for triboelectric sensors: principles, applications and perspectives Recent Advances in Fabricating High-Performance Triboelectric Nanogenerators via Modulating Surface Charge Density Laser-Forged Transformation and Encapsulation of Nanoalloys: Pioneering Robust Wideband Electromagnetic Wave Absorption and Shielding from GHz to THz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1