古巴岛台地Aliger gigas (Linnaeus, 1758)后螺(腹足目:螺科)的种群遗传学

IF 2 3区 生物学 Q3 EVOLUTIONARY BIOLOGY Biological Journal of the Linnean Society Pub Date : 2023-11-04 DOI:10.1093/biolinnean/blad039
Ana María Hernández Vázquez, Luis Javier Madrigal-Roca, Lázaro M Echenique Días, José Alberto Álvarez Lemus, Vicente Berovides Álvarez, Georgina Espinosa López
{"title":"古巴岛台地Aliger gigas (Linnaeus, 1758)后螺(腹足目:螺科)的种群遗传学","authors":"Ana María Hernández Vázquez, Luis Javier Madrigal-Roca, Lázaro M Echenique Días, José Alberto Álvarez Lemus, Vicente Berovides Álvarez, Georgina Espinosa López","doi":"10.1093/biolinnean/blad039","DOIUrl":null,"url":null,"abstract":"Abstract The queen conch, Aliger gigas Linnaeus, 1758, is a large marine gastropod mollusc that inhabits shallow seagrass meadows and sandplain habitats throughout the Caribbean. Owing to overfishing and degradation of the environment, it has become an endangered species in most of its habitat. Research on Cuban populations of A. gigas is scarce and mostly focused on conch exploitation. The present study assesses, for the first time, the genetic diversity and population structure of A. gigas from six locations on the Cuban platform, using five microsatellite loci. At most of the sampled locations, the observed heterozygosity was lower than expected and the FIS value was significantly positive, both of which suggest inbreeding. Also, we found evidence of bottlenecks for two of the locations with a deficit of heterozygotes. Although statistically significant, only 1.66% of the total variance was explained by genetic differentiation among populations, and discriminant analysis of principal components showed different degrees of overlapping between all locations. Accordingly, the results showed that there is an extensive and symmetrical exchange of genetic information. Sparse non-negative matrix factorization analysis determined the existence of three ancestral populations admixed across the sampled locations. Thus, our results suggest that A. gigas from the Cuban island platform could be a unique population, which is relevant for management and conservation strategies.","PeriodicalId":55373,"journal":{"name":"Biological Journal of the Linnean Society","volume":"53 11","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Population genetics of queen conch, <i>Aliger giga</i>s (Linnaeus, 1758) (Gastropoda: Strombidae) at Cuban island platform\",\"authors\":\"Ana María Hernández Vázquez, Luis Javier Madrigal-Roca, Lázaro M Echenique Días, José Alberto Álvarez Lemus, Vicente Berovides Álvarez, Georgina Espinosa López\",\"doi\":\"10.1093/biolinnean/blad039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The queen conch, Aliger gigas Linnaeus, 1758, is a large marine gastropod mollusc that inhabits shallow seagrass meadows and sandplain habitats throughout the Caribbean. Owing to overfishing and degradation of the environment, it has become an endangered species in most of its habitat. Research on Cuban populations of A. gigas is scarce and mostly focused on conch exploitation. The present study assesses, for the first time, the genetic diversity and population structure of A. gigas from six locations on the Cuban platform, using five microsatellite loci. At most of the sampled locations, the observed heterozygosity was lower than expected and the FIS value was significantly positive, both of which suggest inbreeding. Also, we found evidence of bottlenecks for two of the locations with a deficit of heterozygotes. Although statistically significant, only 1.66% of the total variance was explained by genetic differentiation among populations, and discriminant analysis of principal components showed different degrees of overlapping between all locations. Accordingly, the results showed that there is an extensive and symmetrical exchange of genetic information. Sparse non-negative matrix factorization analysis determined the existence of three ancestral populations admixed across the sampled locations. Thus, our results suggest that A. gigas from the Cuban island platform could be a unique population, which is relevant for management and conservation strategies.\",\"PeriodicalId\":55373,\"journal\":{\"name\":\"Biological Journal of the Linnean Society\",\"volume\":\"53 11\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Journal of the Linnean Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biolinnean/blad039\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Journal of the Linnean Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biolinnean/blad039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

海螺女王,Aliger gigas Linnaeus, 1758年,是一种大型海洋腹足类软体动物,生活在加勒比海地区的浅海草甸和沙原栖息地。由于过度捕捞和环境退化,它在大部分栖息地已成为濒危物种。对古巴巨螺种群的研究很少,而且主要集中在海螺的开采上。本研究首次利用5个微卫星位点,对古巴平台上6个地点的gigas的遗传多样性和种群结构进行了评估。在大多数取样点,观察到的杂合度低于预期,FIS值显著为正,两者都表明近交。此外,我们还发现了两个杂合子缺失的位点存在瓶颈的证据。种群间遗传分化对总方差的贡献率仅为1.66%,主成分判别分析显示各种群间存在不同程度的重叠。因此,结果表明存在广泛而对称的遗传信息交换。稀疏非负矩阵分解分析确定了在采样地点混合的三个祖先种群的存在。因此,我们的研究结果表明,古巴岛平台的gigas可能是一个独特的种群,这与管理和保护策略有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Population genetics of queen conch, Aliger gigas (Linnaeus, 1758) (Gastropoda: Strombidae) at Cuban island platform
Abstract The queen conch, Aliger gigas Linnaeus, 1758, is a large marine gastropod mollusc that inhabits shallow seagrass meadows and sandplain habitats throughout the Caribbean. Owing to overfishing and degradation of the environment, it has become an endangered species in most of its habitat. Research on Cuban populations of A. gigas is scarce and mostly focused on conch exploitation. The present study assesses, for the first time, the genetic diversity and population structure of A. gigas from six locations on the Cuban platform, using five microsatellite loci. At most of the sampled locations, the observed heterozygosity was lower than expected and the FIS value was significantly positive, both of which suggest inbreeding. Also, we found evidence of bottlenecks for two of the locations with a deficit of heterozygotes. Although statistically significant, only 1.66% of the total variance was explained by genetic differentiation among populations, and discriminant analysis of principal components showed different degrees of overlapping between all locations. Accordingly, the results showed that there is an extensive and symmetrical exchange of genetic information. Sparse non-negative matrix factorization analysis determined the existence of three ancestral populations admixed across the sampled locations. Thus, our results suggest that A. gigas from the Cuban island platform could be a unique population, which is relevant for management and conservation strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
10.50%
发文量
140
审稿时长
3-6 weeks
期刊介绍: The Biological Journal of the Linnean Society is a direct descendant of the oldest biological journal in the world, which published the epoch-making papers on evolution by Darwin and Wallace. The Journal specializes in evolution in the broadest sense and covers all taxonomic groups in all five kingdoms. It covers all the methods used to study evolution, whether whole-organism or molecular, practical or theoretical.d.
期刊最新文献
Are cows pickier than goats? Linnaeus’s innovative large-scale feeding experiment Hydrographic basins dictate the genetic structure of the paradoxical frog Pseudis bolbodactyla (Anura: Hylidae) in the rivers of Central Brazil The mechanics of male courtship display behaviour in the Ptiloris riflebirds (Aves: Paradisaeidae) Mitogenomics of a declining species, the Rio Grande silvery minnow (Hybognathus amarus), with boom–bust population dynamics Once upon a time: exploring the biogeographic history of the largest endemic lizard family in the Neotropics (Squamata: Gymnophthalmidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1