厚朴电子穿梭化合物治疗帕金森病可行性的计算机评价

IF 1.2 4区 医学 Q4 CHEMISTRY, MEDICINAL Letters in Drug Design & Discovery Pub Date : 2023-10-19 DOI:10.2174/0115701808268549230919172444
Zaina Allyson A. Rivera, Lemmuel L. Tayo, Bor-Yann Chen, Po-Wei Tsai
{"title":"厚朴电子穿梭化合物治疗帕金森病可行性的计算机评价","authors":"Zaina Allyson A. Rivera, Lemmuel L. Tayo, Bor-Yann Chen, Po-Wei Tsai","doi":"10.2174/0115701808268549230919172444","DOIUrl":null,"url":null,"abstract":"Background: Parkinson’s Disease is one of the leading neurodegenerative disorders in the world. Currently, there is still no treatment that could completely cure the disease. Traditional Chinese Medicine has been a source for drug candidates, and many studies have elucidated its pharmacokinetic capabilities. Previous studies showed that Magnolia officinalis has anti-inflammatory, antioxidant, and bioenergy generation activities. Furthermore, the electron-shuttling and bioenergy-stimulating capabilities of herbal and brain disorder medicines have been linked to their effectiveness as a remedy. Objective: This preliminary study aims to evaluate the electron-shuttling compounds of Magnolia officinalis (i.e., acteoside, isoquercitrin, magnatriol B, obovatol, quercitrin, randaiol, and rutin) as potential drug candidates for Parkinson’s Disease. Method: The seven electron-shuttling compounds were individually docked to the five Parkinson’s Disease-related proteins, namely aromatic L-amino acid decarboxylase, α-synuclein, monoamine oxidase B, catechol-o-methyltransferase, and A2A adenosine receptor, using LibDock. ADMET predictions were also made to screen the compounds further. Results: Molecular docking results showed that all compounds have relatively high LibDock scores against the proteins, with acteoside, isoquercitrin, and rutin having the highest scores. However, considering the ADMET results, only magnatriol B, obovatol, and randaiol had optimal properties as candidates for neurodegenerative drugs. Conclusion: The electron-shuttling compounds of M. officinalis, magnatriol B, obovatol, and randaiol, have the potential to be a remedy for Parkinson’s Disease due to their high probability of binding to the proteins.","PeriodicalId":18059,"journal":{"name":"Letters in Drug Design & Discovery","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico Evaluation of the Feasibility of Magnolia officinalis Electronshuttling Compounds as Parkinson’s Disease Remedy\",\"authors\":\"Zaina Allyson A. Rivera, Lemmuel L. Tayo, Bor-Yann Chen, Po-Wei Tsai\",\"doi\":\"10.2174/0115701808268549230919172444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Parkinson’s Disease is one of the leading neurodegenerative disorders in the world. Currently, there is still no treatment that could completely cure the disease. Traditional Chinese Medicine has been a source for drug candidates, and many studies have elucidated its pharmacokinetic capabilities. Previous studies showed that Magnolia officinalis has anti-inflammatory, antioxidant, and bioenergy generation activities. Furthermore, the electron-shuttling and bioenergy-stimulating capabilities of herbal and brain disorder medicines have been linked to their effectiveness as a remedy. Objective: This preliminary study aims to evaluate the electron-shuttling compounds of Magnolia officinalis (i.e., acteoside, isoquercitrin, magnatriol B, obovatol, quercitrin, randaiol, and rutin) as potential drug candidates for Parkinson’s Disease. Method: The seven electron-shuttling compounds were individually docked to the five Parkinson’s Disease-related proteins, namely aromatic L-amino acid decarboxylase, α-synuclein, monoamine oxidase B, catechol-o-methyltransferase, and A2A adenosine receptor, using LibDock. ADMET predictions were also made to screen the compounds further. Results: Molecular docking results showed that all compounds have relatively high LibDock scores against the proteins, with acteoside, isoquercitrin, and rutin having the highest scores. However, considering the ADMET results, only magnatriol B, obovatol, and randaiol had optimal properties as candidates for neurodegenerative drugs. Conclusion: The electron-shuttling compounds of M. officinalis, magnatriol B, obovatol, and randaiol, have the potential to be a remedy for Parkinson’s Disease due to their high probability of binding to the proteins.\",\"PeriodicalId\":18059,\"journal\":{\"name\":\"Letters in Drug Design & Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Drug Design & Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701808268549230919172444\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115701808268549230919172444","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:帕金森病是世界上主要的神经退行性疾病之一。目前,还没有能够完全治愈这种疾病的治疗方法。中药一直是候选药物的来源,许多研究已经阐明了其药代动力学能力。已有研究表明厚朴具有抗炎、抗氧化和生物能源生成活性。此外,草药和脑部疾病药物的电子穿梭和生物能量刺激能力与它们作为治疗药物的有效性有关。目的:本初步研究旨在评价厚朴中具有电子穿梭作用的化合物(即:毛蕊花苷、异槲皮苷、magnatriol B、卵黄醇、槲皮苷、randaiol和芦丁)作为治疗帕金森病的潜在候选药物。方法:利用LibDock将7种电子穿梭化合物分别对接到5种帕金森病相关蛋白上,即芳香l-氨基酸脱羧酶、α-突触核蛋白、单胺氧化酶B、儿茶酚-o-甲基转移酶和A2A腺苷受体。ADMET预测也用于进一步筛选化合物。结果:分子对接结果表明,所有化合物对蛋白质均具有较高的LibDock得分,其中毛蕊糖苷、异槲皮苷和芦丁得分最高。然而,考虑到ADMET的结果,只有magnatriol B, obovatol和randaiol具有作为神经退行性药物的最佳候选特性。结论:马officinalis的电子穿梭化合物,magnatriol B, obovatol和randaiol,有潜力成为治疗帕金森病的药物,因为它们很可能与蛋白质结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In silico Evaluation of the Feasibility of Magnolia officinalis Electronshuttling Compounds as Parkinson’s Disease Remedy
Background: Parkinson’s Disease is one of the leading neurodegenerative disorders in the world. Currently, there is still no treatment that could completely cure the disease. Traditional Chinese Medicine has been a source for drug candidates, and many studies have elucidated its pharmacokinetic capabilities. Previous studies showed that Magnolia officinalis has anti-inflammatory, antioxidant, and bioenergy generation activities. Furthermore, the electron-shuttling and bioenergy-stimulating capabilities of herbal and brain disorder medicines have been linked to their effectiveness as a remedy. Objective: This preliminary study aims to evaluate the electron-shuttling compounds of Magnolia officinalis (i.e., acteoside, isoquercitrin, magnatriol B, obovatol, quercitrin, randaiol, and rutin) as potential drug candidates for Parkinson’s Disease. Method: The seven electron-shuttling compounds were individually docked to the five Parkinson’s Disease-related proteins, namely aromatic L-amino acid decarboxylase, α-synuclein, monoamine oxidase B, catechol-o-methyltransferase, and A2A adenosine receptor, using LibDock. ADMET predictions were also made to screen the compounds further. Results: Molecular docking results showed that all compounds have relatively high LibDock scores against the proteins, with acteoside, isoquercitrin, and rutin having the highest scores. However, considering the ADMET results, only magnatriol B, obovatol, and randaiol had optimal properties as candidates for neurodegenerative drugs. Conclusion: The electron-shuttling compounds of M. officinalis, magnatriol B, obovatol, and randaiol, have the potential to be a remedy for Parkinson’s Disease due to their high probability of binding to the proteins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
245
审稿时长
3 months
期刊介绍: Aims & Scope Letters in Drug Design & Discovery publishes letters, mini-reviews, highlights and guest edited thematic issues in all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis is on publishing quality papers very rapidly by taking full advantage of latest Internet technology for both submission and review of manuscripts. The online journal is an essential reading to all pharmaceutical scientists involved in research in drug design and discovery.
期刊最新文献
Structural Optimization of Quinazolin-4-One Derivatives as Novel SARS-CoV-2 Mpro Inhibitors by Molecular Simulation Therapeutic Potential of Colchicum luteum Against Flagellin (FliC) in Salmonella typhimurium: An In silico Approach The Therapeutic Potential of Ganoderma lucidum Karst and Ziziphus jujuba Mill for Postsurgical Adhesion Band Formation Indirubin as an AHR Ligand: A Combined Network Pharmacology and Experimental Approach to Psoriasis Therapy Exploring New Potential Pkcθ Inhibitors Using Pharmacophore Modeling, Molecular Docking Analysis, and Molecular Dynamics Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1