氮胁迫下柳枝稷内生细菌多样性的变形菌优势及其对植物生长的影响

IF 2.1 4区 工程技术 Q3 ENERGY & FUELS Biofuels-Uk Pub Date : 2023-10-19 DOI:10.1080/17597269.2023.2266629
Rahul Bahulikar
{"title":"氮胁迫下柳枝稷内生细菌多样性的变形菌优势及其对植物生长的影响","authors":"Rahul Bahulikar","doi":"10.1080/17597269.2023.2266629","DOIUrl":null,"url":null,"abstract":"AbstractSwitchgrass (Panicum virgatum L.) is native to North America and cultivated as a forage and bioenergy crop. Inorganic fertilizers enhance biomass production, increase production costs, and pollute the environment. Switchgrass cultivation using an eco-friendly approach might be achieved by inoculation with beneficial microbes. Therefore, the diversity of cultivable endophytic bacteria from roots and shoots of switchgrass growing under a nitrogen regime was studied. The potential of bacteria for plant growth promotion (PGP) was tested under in vitro conditions. A total of 216 bacterial isolates obtained belonged to four phyla and 33 genera, and most isolates were obtained from plants growing under no (0 kg/ha) or low nitrogen (90 kg/ha) input, rather than higher N (180 kg/ha). Higher numbers of isolates belonged to the phylum Proteobacteria, and genus-wise representation showed the dominance of Pseudomonas, Enterobacter, and rhizobia. Bacterial isolates were tested for PGP properties, e.g. phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, Indole Acetic Acid (IAA) production, and nitrogen fixation. Many isolates were positive for one or more PGP properties. In in vitro analysis, selected bacterial isolates were inoculated in two commercial switchgrass cultivars and a showed cultivar-specific response. PGP isolates can be used for pot or field trials and eventually for the sustainable cultivation of switchgrass.Keywords: Biofuel plantendophytesplant growth promotionnitrogen fixation Disclosure statementThe author declares no competing interests.Additional declarationsAs the author used plant material and this study does not report any animal or human research, ethics approval, consent to participate, and consent for publication are not required.Author contributionsThe author carried out all experiments, data analysis, and manuscript writing.Data availability statementThe raw data are available on request to the corresponding author. The bacterial strains are available from the Noble Research Institute, Ardmore, OK, USA.Additional informationFundingNoble Research Institute, Ardmore, OK, USA. This is the link of the institute (https://www.noble.org/).","PeriodicalId":56057,"journal":{"name":"Biofuels-Uk","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteobacterial dominance in endophytic bacterial diversity in switchgrass growing under nitrogen range and effect on plant growth\",\"authors\":\"Rahul Bahulikar\",\"doi\":\"10.1080/17597269.2023.2266629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractSwitchgrass (Panicum virgatum L.) is native to North America and cultivated as a forage and bioenergy crop. Inorganic fertilizers enhance biomass production, increase production costs, and pollute the environment. Switchgrass cultivation using an eco-friendly approach might be achieved by inoculation with beneficial microbes. Therefore, the diversity of cultivable endophytic bacteria from roots and shoots of switchgrass growing under a nitrogen regime was studied. The potential of bacteria for plant growth promotion (PGP) was tested under in vitro conditions. A total of 216 bacterial isolates obtained belonged to four phyla and 33 genera, and most isolates were obtained from plants growing under no (0 kg/ha) or low nitrogen (90 kg/ha) input, rather than higher N (180 kg/ha). Higher numbers of isolates belonged to the phylum Proteobacteria, and genus-wise representation showed the dominance of Pseudomonas, Enterobacter, and rhizobia. Bacterial isolates were tested for PGP properties, e.g. phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, Indole Acetic Acid (IAA) production, and nitrogen fixation. Many isolates were positive for one or more PGP properties. In in vitro analysis, selected bacterial isolates were inoculated in two commercial switchgrass cultivars and a showed cultivar-specific response. PGP isolates can be used for pot or field trials and eventually for the sustainable cultivation of switchgrass.Keywords: Biofuel plantendophytesplant growth promotionnitrogen fixation Disclosure statementThe author declares no competing interests.Additional declarationsAs the author used plant material and this study does not report any animal or human research, ethics approval, consent to participate, and consent for publication are not required.Author contributionsThe author carried out all experiments, data analysis, and manuscript writing.Data availability statementThe raw data are available on request to the corresponding author. The bacterial strains are available from the Noble Research Institute, Ardmore, OK, USA.Additional informationFundingNoble Research Institute, Ardmore, OK, USA. This is the link of the institute (https://www.noble.org/).\",\"PeriodicalId\":56057,\"journal\":{\"name\":\"Biofuels-Uk\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofuels-Uk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17597269.2023.2266629\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels-Uk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17597269.2023.2266629","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

摘要柳枝稷(Panicum virgatum L.)是一种原产于北美的牧草和生物能源作物。无机肥料促进生物质生产,增加生产成本,污染环境。柳枝稷的生态友好栽培可以通过接种有益微生物来实现。因此,对氮肥条件下柳枝稷根、芽可培养内生细菌的多样性进行了研究。在体外条件下,研究了细菌促进植物生长(PGP)的潜力。共分离得到216株细菌,分属4门33属,大多数分离株来自无(0 kg/ha)或低氮(90 kg/ha)条件下生长的植物,而不是高氮(180 kg/ha)条件下生长的植物。较高数量的分离物属于变形菌门,属代表显示假单胞菌,肠杆菌和根瘤菌的优势。对分离的细菌进行了PGP性能测试,如磷酸增溶、1-氨基环丙烷-1-羧酸(ACC)脱氨酶、吲哚乙酸(IAA)生产和固氮。许多分离株对一种或多种PGP特性呈阳性。在体外分析中,选定的细菌分离株接种于两个商品柳枝稷品种,并表现出品种特异性反应。PGP分离株可用于盆栽或田间试验,并最终用于柳枝稷的可持续栽培。关键词:生物燃料植物;植物;促进植物生长;附加声明:由于作者使用植物材料,本研究不涉及任何动物或人类研究,因此不需要伦理批准、参与同意和发表同意。作者完成了所有实验、数据分析和论文撰写。数据可用性声明原始数据可根据通信作者的要求提供。细菌菌株可从诺贝尔研究所,阿德莫尔,OK,美国。资助诺布尔研究所,阿德莫尔,OK,美国。这是研究所的链接(https://www.noble.org/)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteobacterial dominance in endophytic bacterial diversity in switchgrass growing under nitrogen range and effect on plant growth
AbstractSwitchgrass (Panicum virgatum L.) is native to North America and cultivated as a forage and bioenergy crop. Inorganic fertilizers enhance biomass production, increase production costs, and pollute the environment. Switchgrass cultivation using an eco-friendly approach might be achieved by inoculation with beneficial microbes. Therefore, the diversity of cultivable endophytic bacteria from roots and shoots of switchgrass growing under a nitrogen regime was studied. The potential of bacteria for plant growth promotion (PGP) was tested under in vitro conditions. A total of 216 bacterial isolates obtained belonged to four phyla and 33 genera, and most isolates were obtained from plants growing under no (0 kg/ha) or low nitrogen (90 kg/ha) input, rather than higher N (180 kg/ha). Higher numbers of isolates belonged to the phylum Proteobacteria, and genus-wise representation showed the dominance of Pseudomonas, Enterobacter, and rhizobia. Bacterial isolates were tested for PGP properties, e.g. phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, Indole Acetic Acid (IAA) production, and nitrogen fixation. Many isolates were positive for one or more PGP properties. In in vitro analysis, selected bacterial isolates were inoculated in two commercial switchgrass cultivars and a showed cultivar-specific response. PGP isolates can be used for pot or field trials and eventually for the sustainable cultivation of switchgrass.Keywords: Biofuel plantendophytesplant growth promotionnitrogen fixation Disclosure statementThe author declares no competing interests.Additional declarationsAs the author used plant material and this study does not report any animal or human research, ethics approval, consent to participate, and consent for publication are not required.Author contributionsThe author carried out all experiments, data analysis, and manuscript writing.Data availability statementThe raw data are available on request to the corresponding author. The bacterial strains are available from the Noble Research Institute, Ardmore, OK, USA.Additional informationFundingNoble Research Institute, Ardmore, OK, USA. This is the link of the institute (https://www.noble.org/).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofuels-Uk
Biofuels-Uk Energy-Renewable Energy, Sustainability and the Environment
CiteScore
5.40
自引率
9.50%
发文量
56
期刊介绍: Current energy systems need a vast transformation to meet the key demands of the 21st century: reduced environmental impact, economic viability and efficiency. An essential part of this energy revolution is bioenergy. The movement towards widespread implementation of first generation biofuels is still in its infancy, requiring continued evaluation and improvement to be fully realised. Problems with current bioenergy strategies, for example competition over land use for food crops, do not yet have satisfactory solutions. The second generation of biofuels, based around cellulosic ethanol, are now in development and are opening up new possibilities for future energy generation. Recent advances in genetics have pioneered research into designer fuels and sources such as algae have been revealed as untapped bioenergy resources. As global energy requirements change and grow, it is crucial that all aspects of the bioenergy production process are streamlined and improved, from the design of more efficient biorefineries to research into biohydrogen as an energy carrier. Current energy infrastructures need to be adapted and changed to fulfil the promises of biomass for power generation. Biofuels provides a forum for all stakeholders in the bioenergy sector, featuring review articles, original research, commentaries, news, research and development spotlights, interviews with key opinion leaders and much more, with a view to establishing an international community of bioenergy communication. As biofuel research continues at an unprecedented rate, the development of new feedstocks and improvements in bioenergy production processes provide the key to the transformation of biomass into a global energy resource. With the twin threats of climate change and depleted fossil fuel reserves looming, it is vitally important that research communities are mobilized to fully realize the potential of bioenergy.
期刊最新文献
Comparative assessment of biochar produced from LDPE and neem leaves using batch and semi-batch biomass fuel-based reactors Bio-electricity production in a single-chamber microbial fuel cell using urine as a substrate Environmental footprint evaluation of Jatropha biodiesel production and utilization in Ethiopia: a comprehensive well-to-wheel life cycle analysis Potential of thermophilic bacteria isolated from cow dung-grass compost for bioethanol production using floral waste Enhancing biochar properties through doping: A comparative study of sugarcane bagasse and chicken feather
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1