{"title":"智能存储器:在三维堆叠存储器中加速深度学习","authors":"Seyyed Hossein SeyyedAghaei Rezaei;Parham Zilouchian Moghaddam;Mehdi Modarressi","doi":"10.1109/LCA.2023.3287976","DOIUrl":null,"url":null,"abstract":"Processing-in-memory (PIM) is the most promising paradigm to address the bandwidth bottleneck in deep neural network (DNN) accelerators. However, the algorithmic and dataflow structure of DNNs still necessitates moving a large amount of data across banks inside the memory device to bring input data and their corresponding model parameters together, negatively shifting part of the bandwidth bottleneck to the in-memory data communication infrastructure. To alleviate this bottleneck, we present \n<italic>Smart Memory</i>\n, a highly parallel in-memory DNN accelerator for 3D memories that benefits from a scalable high-bandwidth in-memory network. Whereas the existing PIM designs implement the compute units and network-on-chip on the logic die of the underlying 3D memory, in \n<italic>Smart Memory</i>\n the computation and data transmission tasks are distributed across the memory banks. To this end, each memory bank is equipped with (1) a very simple processing unit to run neural networks, and (2) a circuit-switched router to interconnect memory banks by a 3D network-on-memory. Our evaluation shows 44% average performance improvement over state-of-the-art in-memory DNN accelerators.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"137-141"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Memory: Deep Learning Acceleration in 3D-Stacked Memories\",\"authors\":\"Seyyed Hossein SeyyedAghaei Rezaei;Parham Zilouchian Moghaddam;Mehdi Modarressi\",\"doi\":\"10.1109/LCA.2023.3287976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing-in-memory (PIM) is the most promising paradigm to address the bandwidth bottleneck in deep neural network (DNN) accelerators. However, the algorithmic and dataflow structure of DNNs still necessitates moving a large amount of data across banks inside the memory device to bring input data and their corresponding model parameters together, negatively shifting part of the bandwidth bottleneck to the in-memory data communication infrastructure. To alleviate this bottleneck, we present \\n<italic>Smart Memory</i>\\n, a highly parallel in-memory DNN accelerator for 3D memories that benefits from a scalable high-bandwidth in-memory network. Whereas the existing PIM designs implement the compute units and network-on-chip on the logic die of the underlying 3D memory, in \\n<italic>Smart Memory</i>\\n the computation and data transmission tasks are distributed across the memory banks. To this end, each memory bank is equipped with (1) a very simple processing unit to run neural networks, and (2) a circuit-switched router to interconnect memory banks by a 3D network-on-memory. Our evaluation shows 44% average performance improvement over state-of-the-art in-memory DNN accelerators.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"23 1\",\"pages\":\"137-141\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10198388/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10198388/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Smart Memory: Deep Learning Acceleration in 3D-Stacked Memories
Processing-in-memory (PIM) is the most promising paradigm to address the bandwidth bottleneck in deep neural network (DNN) accelerators. However, the algorithmic and dataflow structure of DNNs still necessitates moving a large amount of data across banks inside the memory device to bring input data and their corresponding model parameters together, negatively shifting part of the bandwidth bottleneck to the in-memory data communication infrastructure. To alleviate this bottleneck, we present
Smart Memory
, a highly parallel in-memory DNN accelerator for 3D memories that benefits from a scalable high-bandwidth in-memory network. Whereas the existing PIM designs implement the compute units and network-on-chip on the logic die of the underlying 3D memory, in
Smart Memory
the computation and data transmission tasks are distributed across the memory banks. To this end, each memory bank is equipped with (1) a very simple processing unit to run neural networks, and (2) a circuit-switched router to interconnect memory banks by a 3D network-on-memory. Our evaluation shows 44% average performance improvement over state-of-the-art in-memory DNN accelerators.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.