在食品成分数据知识库中重用FoodOn本体

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Semantic Web Pub Date : 2023-05-29 DOI:10.3233/sw-233207
Katherine Thornton, Kenneth Seals-Nutt, Mika Matsuzaki, Damion Dooley
{"title":"在食品成分数据知识库中重用FoodOn本体","authors":"Katherine Thornton, Kenneth Seals-Nutt, Mika Matsuzaki, Damion Dooley","doi":"10.3233/sw-233207","DOIUrl":null,"url":null,"abstract":"We describe our work to integrate the FoodOn ontology with our knowledge base of food composition data, WikiFCD. WikiFCD is knowledge base of structured data related to food composition and food items. With a goal to reuse FoodOn identifiers for food items, we imported a subset of the FoodOn ontology into the WikiFCD knowledge base. We aligned the import via a shared use of NCBI taxon identifiers for the taxon names of the plants from which the food items are derived. Reusing FoodOn benefits WikiFCD by allowing us to leverage the food item groupings that FoodOn contains. This integration also has potential future benefits for the FoodOn community due to the fact that WikiFCD provides food composition data at the food item level, and that WikiFCD is mapped to Wikidata and contains a SPARQL endpoint that supports federated queries. Federated queries across WikiFCD and Wikidata allow us to ask questions about food items that benefit from the cross-domain information of Wikidata, greatly increasing the breadth of possible data combinations.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"22 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reuse of the FoodOn ontology in a knowledge base of food composition data\",\"authors\":\"Katherine Thornton, Kenneth Seals-Nutt, Mika Matsuzaki, Damion Dooley\",\"doi\":\"10.3233/sw-233207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our work to integrate the FoodOn ontology with our knowledge base of food composition data, WikiFCD. WikiFCD is knowledge base of structured data related to food composition and food items. With a goal to reuse FoodOn identifiers for food items, we imported a subset of the FoodOn ontology into the WikiFCD knowledge base. We aligned the import via a shared use of NCBI taxon identifiers for the taxon names of the plants from which the food items are derived. Reusing FoodOn benefits WikiFCD by allowing us to leverage the food item groupings that FoodOn contains. This integration also has potential future benefits for the FoodOn community due to the fact that WikiFCD provides food composition data at the food item level, and that WikiFCD is mapped to Wikidata and contains a SPARQL endpoint that supports federated queries. Federated queries across WikiFCD and Wikidata allow us to ask questions about food items that benefit from the cross-domain information of Wikidata, greatly increasing the breadth of possible data combinations.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-233207\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sw-233207","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了将FoodOn本体与我们的食品成分数据知识库WikiFCD集成的工作。WikiFCD是与食品成分和食品项目相关的结构化数据知识库。为了重用食品的FoodOn标识符,我们将FoodOn本体的一个子集导入WikiFCD知识库。我们通过共享使用NCBI分类单元标识符来对齐进口,这些分类单元名称来源于食物的植物。重用FoodOn对WikiFCD有利,因为它允许我们利用FoodOn所包含的食物项分组。由于WikiFCD在食品项目级别提供食品成分数据,并且WikiFCD映射到Wikidata并包含一个支持联邦查询的SPARQL端点,因此这种集成在未来对FoodOn社区也有潜在的好处。跨WikiFCD和Wikidata的联合查询允许我们询问有关食品的问题,这些问题受益于Wikidata的跨域信息,极大地增加了可能的数据组合的广度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reuse of the FoodOn ontology in a knowledge base of food composition data
We describe our work to integrate the FoodOn ontology with our knowledge base of food composition data, WikiFCD. WikiFCD is knowledge base of structured data related to food composition and food items. With a goal to reuse FoodOn identifiers for food items, we imported a subset of the FoodOn ontology into the WikiFCD knowledge base. We aligned the import via a shared use of NCBI taxon identifiers for the taxon names of the plants from which the food items are derived. Reusing FoodOn benefits WikiFCD by allowing us to leverage the food item groupings that FoodOn contains. This integration also has potential future benefits for the FoodOn community due to the fact that WikiFCD provides food composition data at the food item level, and that WikiFCD is mapped to Wikidata and contains a SPARQL endpoint that supports federated queries. Federated queries across WikiFCD and Wikidata allow us to ask questions about food items that benefit from the cross-domain information of Wikidata, greatly increasing the breadth of possible data combinations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semantic Web
Semantic Web COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍: The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.
期刊最新文献
Wikidata subsetting: Approaches, tools, and evaluation An ontology of 3D environment where a simulated manipulation task takes place (ENVON) Sem@ K: Is my knowledge graph embedding model semantic-aware? Using semantic story maps to describe a territory beyond its map NeuSyRE: Neuro-symbolic visual understanding and reasoning framework based on scene graph enrichment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1