结合多价氨基糖苷阿米卡星适配体的筛选

AHM Khurshid Alam, Yoshiko Miura, Aziz Abdur Rahman, Md Golam Sadik, Mamunur Rashid, Toshifumi Tsukahara
{"title":"结合多价氨基糖苷阿米卡星适配体的筛选","authors":"AHM Khurshid Alam, Yoshiko Miura, Aziz Abdur Rahman, Md Golam Sadik, Mamunur Rashid, Toshifumi Tsukahara","doi":"10.3329/bpj.v26i2.67802","DOIUrl":null,"url":null,"abstract":"Increased awareness of the multiple roles of RNA molecules has led to the realization that, in addition to their structural and functional roles, RNAs can be drug targets for small molecular therapy. Amikacin, a member of the aminoglycoside group of antibiotics, binds to specific sites in bacterial 16S ribosomal RNAs (rRNAs) and interferes with protein synthesis leading to cell death. Here, we used the systemic evolution of ligands by exponential enrichment (SELEX) method to isolate high affinity RNA fragments (aptamers) that bind to amikacin. After five rounds of SELEX selection, in which a linear N25 DNA template was used for the first selection cycle, the resulting RNA was cloned and sequenced. Among the 38 clones generated, five groups of sequences (groups A through E) containing nine conserved motifs were identified. The sequences of groups A and B were almost identical, indicating that the selected RNA was enriched. Subsequently, the Basic Local Alignment Search Tool program was used to search for the conserved motifs in bacterial 16S rRNA sequences. Strikingly, no sequence homology was observed, suggesting that the conserved sequences (motifs) identified in this studymay be novel target sites for amikacin. Bangladesh Pharmaceutical Journal 26(2): 134-143, 2023 (July)","PeriodicalId":8695,"journal":{"name":"Bangladesh Pharmaceutical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of Aptamers that Bind to the Multivalent Aminoglycoside Amikacin\",\"authors\":\"AHM Khurshid Alam, Yoshiko Miura, Aziz Abdur Rahman, Md Golam Sadik, Mamunur Rashid, Toshifumi Tsukahara\",\"doi\":\"10.3329/bpj.v26i2.67802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased awareness of the multiple roles of RNA molecules has led to the realization that, in addition to their structural and functional roles, RNAs can be drug targets for small molecular therapy. Amikacin, a member of the aminoglycoside group of antibiotics, binds to specific sites in bacterial 16S ribosomal RNAs (rRNAs) and interferes with protein synthesis leading to cell death. Here, we used the systemic evolution of ligands by exponential enrichment (SELEX) method to isolate high affinity RNA fragments (aptamers) that bind to amikacin. After five rounds of SELEX selection, in which a linear N25 DNA template was used for the first selection cycle, the resulting RNA was cloned and sequenced. Among the 38 clones generated, five groups of sequences (groups A through E) containing nine conserved motifs were identified. The sequences of groups A and B were almost identical, indicating that the selected RNA was enriched. Subsequently, the Basic Local Alignment Search Tool program was used to search for the conserved motifs in bacterial 16S rRNA sequences. Strikingly, no sequence homology was observed, suggesting that the conserved sequences (motifs) identified in this studymay be novel target sites for amikacin. Bangladesh Pharmaceutical Journal 26(2): 134-143, 2023 (July)\",\"PeriodicalId\":8695,\"journal\":{\"name\":\"Bangladesh Pharmaceutical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bangladesh Pharmaceutical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/bpj.v26i2.67802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bangladesh Pharmaceutical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/bpj.v26i2.67802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对RNA分子多重作用认识的提高,人们认识到,除了其结构和功能作用外,RNA还可以成为小分子治疗的药物靶点。阿米卡星是抗生素氨基糖苷类的一员,与细菌16S核糖体rna (RNAs)的特定位点结合,干扰蛋白质合成,导致细胞死亡。在这里,我们利用配体的系统进化,通过指数富集(SELEX)方法分离出与阿米卡星结合的高亲和力RNA片段(适体)。经过五轮SELEX选择,其中第一轮选择使用线性N25 DNA模板,克隆得到的RNA并测序。在38个克隆中,鉴定出包含9个保守基序的5组序列(A ~ E组)。A组和B组的序列几乎相同,说明所选RNA被富集。随后,使用Basic Local Alignment Search Tool程序搜索细菌16S rRNA序列中的保守基序。值得注意的是,没有观察到序列同源性,这表明本研究中发现的保守序列(基序)可能是阿米卡星的新靶点。孟加拉国医药杂志26(2):134- 143,2023(7月)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Screening of Aptamers that Bind to the Multivalent Aminoglycoside Amikacin
Increased awareness of the multiple roles of RNA molecules has led to the realization that, in addition to their structural and functional roles, RNAs can be drug targets for small molecular therapy. Amikacin, a member of the aminoglycoside group of antibiotics, binds to specific sites in bacterial 16S ribosomal RNAs (rRNAs) and interferes with protein synthesis leading to cell death. Here, we used the systemic evolution of ligands by exponential enrichment (SELEX) method to isolate high affinity RNA fragments (aptamers) that bind to amikacin. After five rounds of SELEX selection, in which a linear N25 DNA template was used for the first selection cycle, the resulting RNA was cloned and sequenced. Among the 38 clones generated, five groups of sequences (groups A through E) containing nine conserved motifs were identified. The sequences of groups A and B were almost identical, indicating that the selected RNA was enriched. Subsequently, the Basic Local Alignment Search Tool program was used to search for the conserved motifs in bacterial 16S rRNA sequences. Strikingly, no sequence homology was observed, suggesting that the conserved sequences (motifs) identified in this studymay be novel target sites for amikacin. Bangladesh Pharmaceutical Journal 26(2): 134-143, 2023 (July)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Community-based Descriptive Cross-sectional Study on Prevalence, Clinical Manifestation, Beliefs and Management Approach of Gastroesophageal Reflux Disease (GERD) Among Young Bangladeshi Population Sedentary Lifestyle and Prospective Health Risks: A Pilot Study Among Bangladeshi Corporate Professionals Characterization of Lactic Acid Bacteria (LAB) Isolated from Homemade Fermented Kimchi in Bangladesh Clinical Evidence of Multi-drug Resistant, Extensively Drug Resistant and Pan-drug Resistant Acinetobacter sp. in Bangladesh Design and Evaluation of Hair Growth - Hair Fall Oil Formulation from Botanicals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1