Keller-Segel方程的保界有限元逼近

Santiago Badia, Jesus Bonilla, Juan Vicente Gutierrez-Santacreu
{"title":"Keller-Segel方程的保界有限元逼近","authors":"Santiago Badia, Jesus Bonilla, Juan Vicente Gutierrez-Santacreu","doi":"10.1142/s0218202523500148","DOIUrl":null,"url":null,"abstract":"This paper aims to develop numerical approximations of the Keller–Segel equations that mimic at the discrete level the lower bounds and the energy law of the continuous problem. We solve these equations for two unknowns: the organism (or cell) density, which is a positive variable, and the chemoattractant density, which is a non-negative variable. We propose two algorithms, which combine a stabilized finite element method and a semi-implicit time integration. The stabilization consists of a nonlinear artificial diffusion that employs a graph-Laplacian operator and a shock detector that localizes local extrema. As a result, both algorithms turn out to be nonlinear and can generate cell and chemoattractant numerical densities fulfilling lower bounds. However, the first algorithm requires a suitable constraint between the space and time discrete parameters, whereas the second one does not. We design the latter to attain a discrete energy law on acute meshes. We report some numerical experiments to validate the theoretical results on blowup and nonblowup phenomena. In the blowup setting, we identify a locking phenomenon that relates the [Formula: see text]-norm to the [Formula: see text]-norm limiting the growth of the singularity when supported on a macroelement.","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bound-preserving finite element approximations of the Keller–Segel equations\",\"authors\":\"Santiago Badia, Jesus Bonilla, Juan Vicente Gutierrez-Santacreu\",\"doi\":\"10.1142/s0218202523500148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to develop numerical approximations of the Keller–Segel equations that mimic at the discrete level the lower bounds and the energy law of the continuous problem. We solve these equations for two unknowns: the organism (or cell) density, which is a positive variable, and the chemoattractant density, which is a non-negative variable. We propose two algorithms, which combine a stabilized finite element method and a semi-implicit time integration. The stabilization consists of a nonlinear artificial diffusion that employs a graph-Laplacian operator and a shock detector that localizes local extrema. As a result, both algorithms turn out to be nonlinear and can generate cell and chemoattractant numerical densities fulfilling lower bounds. However, the first algorithm requires a suitable constraint between the space and time discrete parameters, whereas the second one does not. We design the latter to attain a discrete energy law on acute meshes. We report some numerical experiments to validate the theoretical results on blowup and nonblowup phenomena. In the blowup setting, we identify a locking phenomenon that relates the [Formula: see text]-norm to the [Formula: see text]-norm limiting the growth of the singularity when supported on a macroelement.\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202523500148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202523500148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文旨在建立在离散水平上模拟连续问题下界和能量定律的Keller-Segel方程的数值近似。我们用两个未知数来解这些方程:生物体(或细胞)密度,这是一个正变量,而化学引诱剂密度,这是一个非负变量。我们提出了两种算法,结合稳定有限元法和半隐式时间积分法。该方法包括一个非线性人工扩散算法,该算法采用了一个图拉普拉斯算子和一个局部极值定位的冲击检测器。结果表明,这两种算法都是非线性的,可以生成满足下界的细胞和化学引诱物数值密度。然而,第一种算法需要在空间和时间离散参数之间有合适的约束,而第二种算法则不需要。我们设计后者以获得急性网格上的离散能量律。我们报道了一些数值实验来验证爆炸和不爆炸现象的理论结果。在放大设置中,我们确定了一种锁定现象,该现象将[公式:见文本]规范与[公式:见文本]规范联系起来,当在宏元素上支持时,限制奇点的增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bound-preserving finite element approximations of the Keller–Segel equations
This paper aims to develop numerical approximations of the Keller–Segel equations that mimic at the discrete level the lower bounds and the energy law of the continuous problem. We solve these equations for two unknowns: the organism (or cell) density, which is a positive variable, and the chemoattractant density, which is a non-negative variable. We propose two algorithms, which combine a stabilized finite element method and a semi-implicit time integration. The stabilization consists of a nonlinear artificial diffusion that employs a graph-Laplacian operator and a shock detector that localizes local extrema. As a result, both algorithms turn out to be nonlinear and can generate cell and chemoattractant numerical densities fulfilling lower bounds. However, the first algorithm requires a suitable constraint between the space and time discrete parameters, whereas the second one does not. We design the latter to attain a discrete energy law on acute meshes. We report some numerical experiments to validate the theoretical results on blowup and nonblowup phenomena. In the blowup setting, we identify a locking phenomenon that relates the [Formula: see text]-norm to the [Formula: see text]-norm limiting the growth of the singularity when supported on a macroelement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-by-step solving virtual element schemes based on scalar auxiliary variable with relaxation for Allen-Cahn type gradient flows Computational and Analytical Studies of a New Nonlocal Phase-Field Crystal Model in Two Dimensions On the continuum limit of epidemiological models on graphs: convergence and approximation results A nodally bound-preserving finite element method for reaction–convection–diffusion equations Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1