生物二氧化硅在节能轮胎化合物中的应用:提高性能和效率

IF 3.2 3区 化学 Q2 POLYMER SCIENCE e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0043
Mohamad Irfan Fathurrohman, Santi Puspitasari, Asron Ferdian Falaah, Lydia Anggraini, Nanang Ali Sutisna, Rijal Hakiki
{"title":"生物二氧化硅在节能轮胎化合物中的应用:提高性能和效率","authors":"Mohamad Irfan Fathurrohman, Santi Puspitasari, Asron Ferdian Falaah, Lydia Anggraini, Nanang Ali Sutisna, Rijal Hakiki","doi":"10.1515/epoly-2023-0043","DOIUrl":null,"url":null,"abstract":"Abstract Energy-saving tires have been developed by researchers in the industry in order to minimize hysteresis loss. In general, this is achieved by combining precipitated silica sourced from silica sand with a silane coupling agent. This strategic reaction serves to elevate the performance characteristics of tread tire, effectively enhancing their properties. Therefore, this research is aimed to investigate the utilization of commercially available biosilica compared to high dispersed (HD) silica, examining their potential as reinforcing agents in the composition of passenger tread tire compound. This compound was formulated using a blend of solution styrene-butadiene rubber (SSBR) and butadiene rubber (BR). A comprehensive analysis was conducted to assess the impact of varying ratios between biosilica and HD silica on the mechanical and dynamic properties of tread tire compound composed of SSBR and BR blend. The results showed that the incorporation of biosilica could effectively reduce the filler network resulting in better dispersion of biosilica in the SSBR/BR blend matrix. As a result, it improved wet grip (44%) and rolling resistance (26%) while maintaining abrasion resistance compared with HD silica in passenger tread tire compound. The application of biosilica as an eco-friendly reinforcement material exhibited its potential for elevating the performance of energy-efficient tread tire.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"2 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of biosilica for energy-saving tire compounds: Enhancing performance and efficiency\",\"authors\":\"Mohamad Irfan Fathurrohman, Santi Puspitasari, Asron Ferdian Falaah, Lydia Anggraini, Nanang Ali Sutisna, Rijal Hakiki\",\"doi\":\"10.1515/epoly-2023-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Energy-saving tires have been developed by researchers in the industry in order to minimize hysteresis loss. In general, this is achieved by combining precipitated silica sourced from silica sand with a silane coupling agent. This strategic reaction serves to elevate the performance characteristics of tread tire, effectively enhancing their properties. Therefore, this research is aimed to investigate the utilization of commercially available biosilica compared to high dispersed (HD) silica, examining their potential as reinforcing agents in the composition of passenger tread tire compound. This compound was formulated using a blend of solution styrene-butadiene rubber (SSBR) and butadiene rubber (BR). A comprehensive analysis was conducted to assess the impact of varying ratios between biosilica and HD silica on the mechanical and dynamic properties of tread tire compound composed of SSBR and BR blend. The results showed that the incorporation of biosilica could effectively reduce the filler network resulting in better dispersion of biosilica in the SSBR/BR blend matrix. As a result, it improved wet grip (44%) and rolling resistance (26%) while maintaining abrasion resistance compared with HD silica in passenger tread tire compound. The application of biosilica as an eco-friendly reinforcement material exhibited its potential for elevating the performance of energy-efficient tread tire.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0043\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0043","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

节能轮胎的研究是为了减少轮胎的滞回损耗。一般来说,这是通过将来自硅砂的沉淀二氧化硅与硅烷偶联剂结合来实现的。这种策略性反应有助于提升胎面轮胎的性能特征,有效地提高其性能。因此,本研究旨在研究商用生物二氧化硅与高分散(HD)二氧化硅的利用情况,研究它们作为增强剂在客车胎面轮胎复合材料中的潜力。该化合物是用溶液丁苯橡胶(SSBR)和丁二烯橡胶(BR)的共混物配制的。综合分析了不同比例的生物二氧化硅和HD二氧化硅对由SSBR和BR共混物组成的胎面轮胎胶力学和动力性能的影响。结果表明,生物二氧化硅的掺入可以有效地减少填料网络,使生物二氧化硅在SSBR/BR共混基质中的分散性更好。因此,与HD二氧化硅乘用胎面轮胎化合物相比,它提高了湿抓地力(44%)和滚动阻力(26%),同时保持了耐磨性。生物二氧化硅作为一种环保增强材料的应用显示了其提高节能胎面轮胎性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilization of biosilica for energy-saving tire compounds: Enhancing performance and efficiency
Abstract Energy-saving tires have been developed by researchers in the industry in order to minimize hysteresis loss. In general, this is achieved by combining precipitated silica sourced from silica sand with a silane coupling agent. This strategic reaction serves to elevate the performance characteristics of tread tire, effectively enhancing their properties. Therefore, this research is aimed to investigate the utilization of commercially available biosilica compared to high dispersed (HD) silica, examining their potential as reinforcing agents in the composition of passenger tread tire compound. This compound was formulated using a blend of solution styrene-butadiene rubber (SSBR) and butadiene rubber (BR). A comprehensive analysis was conducted to assess the impact of varying ratios between biosilica and HD silica on the mechanical and dynamic properties of tread tire compound composed of SSBR and BR blend. The results showed that the incorporation of biosilica could effectively reduce the filler network resulting in better dispersion of biosilica in the SSBR/BR blend matrix. As a result, it improved wet grip (44%) and rolling resistance (26%) while maintaining abrasion resistance compared with HD silica in passenger tread tire compound. The application of biosilica as an eco-friendly reinforcement material exhibited its potential for elevating the performance of energy-efficient tread tire.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
期刊最新文献
Design, synthesis, and characterization of novel copolymer gel particles for water-plugging applications Influence of 1,1′-Azobis(cyclohexanezonitrile) on the thermo-oxidative aging performance of diolefin elastomers Additive manufacturing (3D printing) technologies for fiber-reinforced polymer composite materials: A review on fabrication methods and process parameters Effect of tannic acid chelating treatment on thermo-oxidative aging property of natural rubber Normal-hexane treatment on PET-based waste fiber depolymerization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1