{"title":"降低TRPM7可通过抑制HMGB1/TLR4信号通路减轻高糖诱导的肾小管上皮细胞损伤","authors":"Hong Chen, Wei Feng, Zheng-Yong Cao, Fu-Min Guan","doi":"10.4103/2221-1691.385570","DOIUrl":null,"url":null,"abstract":"Objective: To explore the regulatory mechanism of transient receptor potential melastatin-7 (TRPM7) in high glucose-induced renal tubular epithelial cell injury. Methods: The expression of TRPM7 in the serum of diabetic nephropathy patients and high glucose-induced HK-2 cells was detected by RT-qPCR. Then, the TRPM7 interference vector was constructed, and the downstream high mobility group box 1 (HMGB1)/Toll-like receptor 4 (TLR4) signaling pathway proteins were detected. Next, in addition to interference with TRPM7 expression, overexpression of HMGB1 in high glucose-induced HK-2 cells was performed. Cell activity, apoptosis, oxidative stress levels, and inflammation levels were determined by CCK8, TUNEL, Western blotting, immunofluorescence and related kits. Results: TRPM7 expression was upregulated in the serum of diabetic nephropathy patients and high glucose-induced HK-2 cells. Interference with TRPM7 reduced cell damage, epithelial-mesenchymal transition, oxidative stress, and inflammatory response in high glucose-induced HK-2 cells via inhibiting the HMGB1/TLR4 signaling pathway. However, the effects induced by TRPM7 silencing were abrogated by HMGB1 overexpression. Conclusions: Decreased TRPM7 alleviates high glucose-induced renal tubular epithelial cell injury by inhibiting the HMGB1/TLR4 signaling pathway. Further animal experiments and clinical trials are warranted to verify its effect.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":"40 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decreased TRPM7 alleviates high glucose-induced renal tubular epithelial cell injury by inhibiting the HMGB1/TLR4 signaling pathway\",\"authors\":\"Hong Chen, Wei Feng, Zheng-Yong Cao, Fu-Min Guan\",\"doi\":\"10.4103/2221-1691.385570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: To explore the regulatory mechanism of transient receptor potential melastatin-7 (TRPM7) in high glucose-induced renal tubular epithelial cell injury. Methods: The expression of TRPM7 in the serum of diabetic nephropathy patients and high glucose-induced HK-2 cells was detected by RT-qPCR. Then, the TRPM7 interference vector was constructed, and the downstream high mobility group box 1 (HMGB1)/Toll-like receptor 4 (TLR4) signaling pathway proteins were detected. Next, in addition to interference with TRPM7 expression, overexpression of HMGB1 in high glucose-induced HK-2 cells was performed. Cell activity, apoptosis, oxidative stress levels, and inflammation levels were determined by CCK8, TUNEL, Western blotting, immunofluorescence and related kits. Results: TRPM7 expression was upregulated in the serum of diabetic nephropathy patients and high glucose-induced HK-2 cells. Interference with TRPM7 reduced cell damage, epithelial-mesenchymal transition, oxidative stress, and inflammatory response in high glucose-induced HK-2 cells via inhibiting the HMGB1/TLR4 signaling pathway. However, the effects induced by TRPM7 silencing were abrogated by HMGB1 overexpression. Conclusions: Decreased TRPM7 alleviates high glucose-induced renal tubular epithelial cell injury by inhibiting the HMGB1/TLR4 signaling pathway. Further animal experiments and clinical trials are warranted to verify its effect.\",\"PeriodicalId\":8560,\"journal\":{\"name\":\"Asian Pacific journal of tropical biomedicine\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Pacific journal of tropical biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2221-1691.385570\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TROPICAL MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Pacific journal of tropical biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2221-1691.385570","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TROPICAL MEDICINE","Score":null,"Total":0}
Decreased TRPM7 alleviates high glucose-induced renal tubular epithelial cell injury by inhibiting the HMGB1/TLR4 signaling pathway
Objective: To explore the regulatory mechanism of transient receptor potential melastatin-7 (TRPM7) in high glucose-induced renal tubular epithelial cell injury. Methods: The expression of TRPM7 in the serum of diabetic nephropathy patients and high glucose-induced HK-2 cells was detected by RT-qPCR. Then, the TRPM7 interference vector was constructed, and the downstream high mobility group box 1 (HMGB1)/Toll-like receptor 4 (TLR4) signaling pathway proteins were detected. Next, in addition to interference with TRPM7 expression, overexpression of HMGB1 in high glucose-induced HK-2 cells was performed. Cell activity, apoptosis, oxidative stress levels, and inflammation levels were determined by CCK8, TUNEL, Western blotting, immunofluorescence and related kits. Results: TRPM7 expression was upregulated in the serum of diabetic nephropathy patients and high glucose-induced HK-2 cells. Interference with TRPM7 reduced cell damage, epithelial-mesenchymal transition, oxidative stress, and inflammatory response in high glucose-induced HK-2 cells via inhibiting the HMGB1/TLR4 signaling pathway. However, the effects induced by TRPM7 silencing were abrogated by HMGB1 overexpression. Conclusions: Decreased TRPM7 alleviates high glucose-induced renal tubular epithelial cell injury by inhibiting the HMGB1/TLR4 signaling pathway. Further animal experiments and clinical trials are warranted to verify its effect.
期刊介绍:
The journal will cover technical and clinical studies related to health, ethical and social issues in field of biology, bacteriology, biochemistry, biotechnology, cell biology, environmental biology, microbiology, medical microbiology, pharmacology, physiology, pathology, immunology, virology, toxicology, epidemiology, vaccinology, hematology, histopathology, cytology, genetics and tropical agriculture. Articles with clinical interest and implications will be given preference.