Veerakumar Arumugam, Alfred Iing Yoong Tok, Vitali Lipik
{"title":"一种生产户外运动服装用可持续抗风防水面料的新方法","authors":"Veerakumar Arumugam, Alfred Iing Yoong Tok, Vitali Lipik","doi":"10.1177/15280837231184256","DOIUrl":null,"url":null,"abstract":"Clothing production have adverse impact on the environment due to inefficient energy utilization during production processing, huge consumption of water and usage of harmful chemicals. Therefore, this work aims to develop a sustainable wind resistant and water repellant fabric through novel technology that reduces production processing steps for efficient energy consumption without compromising required functional performances without durable water repellency coatings (DWR) and application of fluorinated chemicals. This development aims to overcome the drawbacks associated with multiple production processing steps, hazardous chemicals, delamination, degradation, and reduction in vapor permeability due to adhesive layer, etc. In this work, the one-layer fabric was developed using polyester filament yarn on one surface and polyamide low melt yarn on another surface using plaited knitting technique. Further, the fabric was thermally processed at different conditions to create uniform barrier film through melting and flowing of polyamide yarns on fabric surface. The optimized and efficient thermal processing parameters were determined using Box-Behnken design as 120°C, 30 s and 0.5 MPa which yielded a fabric membrane with air permeability of 33.5 cm 3 /s/cm 2 , highest resistance to surface wetting with grade 5, exhibited hydrophobicity with water contact angle (WCA) of 120° and water vapor transmission rate of 875.7 (g/(m 2 ·24 h)). Developed fabric also shows high abrasion resistant which would have increased clothing lifespan and comparable stiffness to commercially available wind stopper and water repellant fabrics.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":"101 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method to produce sustainable wind resistant and water repellant fabric for outdoor sport clothing\",\"authors\":\"Veerakumar Arumugam, Alfred Iing Yoong Tok, Vitali Lipik\",\"doi\":\"10.1177/15280837231184256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clothing production have adverse impact on the environment due to inefficient energy utilization during production processing, huge consumption of water and usage of harmful chemicals. Therefore, this work aims to develop a sustainable wind resistant and water repellant fabric through novel technology that reduces production processing steps for efficient energy consumption without compromising required functional performances without durable water repellency coatings (DWR) and application of fluorinated chemicals. This development aims to overcome the drawbacks associated with multiple production processing steps, hazardous chemicals, delamination, degradation, and reduction in vapor permeability due to adhesive layer, etc. In this work, the one-layer fabric was developed using polyester filament yarn on one surface and polyamide low melt yarn on another surface using plaited knitting technique. Further, the fabric was thermally processed at different conditions to create uniform barrier film through melting and flowing of polyamide yarns on fabric surface. The optimized and efficient thermal processing parameters were determined using Box-Behnken design as 120°C, 30 s and 0.5 MPa which yielded a fabric membrane with air permeability of 33.5 cm 3 /s/cm 2 , highest resistance to surface wetting with grade 5, exhibited hydrophobicity with water contact angle (WCA) of 120° and water vapor transmission rate of 875.7 (g/(m 2 ·24 h)). Developed fabric also shows high abrasion resistant which would have increased clothing lifespan and comparable stiffness to commercially available wind stopper and water repellant fabrics.\",\"PeriodicalId\":16097,\"journal\":{\"name\":\"Journal of Industrial Textiles\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Textiles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15280837231184256\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15280837231184256","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
摘要
服装生产过程中能源利用效率低下,耗水量巨大,使用有害化学物质,对环境造成了不利影响。因此,这项工作旨在通过新技术开发一种可持续的抗风和防水织物,减少生产加工步骤,实现有效的能源消耗,同时不影响所需的功能性能,而不需要耐用的防水涂层(DWR)和氟化化学品的应用。这一发展旨在克服与多个生产加工步骤、危险化学品、分层、降解以及由于粘接层而导致的透气性降低等相关的缺点。本文采用编结技术,以涤纶长丝为表面,聚酰胺低熔体纱为表面,开发了一层织物。在不同条件下对织物进行热处理,通过锦纶丝在织物表面的熔融和流动,形成均匀的阻隔膜。采用Box-Behnken设计确定了优化后的高效热加工参数为120℃、30 s、0.5 MPa,得到的织物膜透气性为33.5 cm 3 /s/cm 2,抗表面润湿性最高,为5级,疏水接触角为120°,水蒸气透过率为875.7 (g/(m 2·24 h))。开发的织物还显示出高耐磨性,这将增加服装的使用寿命和硬度,可与市售的防风和防水织物相媲美。
A novel method to produce sustainable wind resistant and water repellant fabric for outdoor sport clothing
Clothing production have adverse impact on the environment due to inefficient energy utilization during production processing, huge consumption of water and usage of harmful chemicals. Therefore, this work aims to develop a sustainable wind resistant and water repellant fabric through novel technology that reduces production processing steps for efficient energy consumption without compromising required functional performances without durable water repellency coatings (DWR) and application of fluorinated chemicals. This development aims to overcome the drawbacks associated with multiple production processing steps, hazardous chemicals, delamination, degradation, and reduction in vapor permeability due to adhesive layer, etc. In this work, the one-layer fabric was developed using polyester filament yarn on one surface and polyamide low melt yarn on another surface using plaited knitting technique. Further, the fabric was thermally processed at different conditions to create uniform barrier film through melting and flowing of polyamide yarns on fabric surface. The optimized and efficient thermal processing parameters were determined using Box-Behnken design as 120°C, 30 s and 0.5 MPa which yielded a fabric membrane with air permeability of 33.5 cm 3 /s/cm 2 , highest resistance to surface wetting with grade 5, exhibited hydrophobicity with water contact angle (WCA) of 120° and water vapor transmission rate of 875.7 (g/(m 2 ·24 h)). Developed fabric also shows high abrasion resistant which would have increased clothing lifespan and comparable stiffness to commercially available wind stopper and water repellant fabrics.
期刊介绍:
The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.