{"title":"β -葡聚糖通过调节ACE-AT1R轴,抑制异丙肾上腺素诱导的心脏重构,减轻心脏炎症和细胞凋亡","authors":"Sengottuvelu Singaravel, Anitha Roy, VasanthaMallenahalli Neelakantappa, Jayashree Ganesan, BalakrishnanRamajayam Asokan, Srinivasan Kulandaivel, V VSathibabu Uddandrao","doi":"10.4103/2221-1691.385569","DOIUrl":null,"url":null,"abstract":"Objective: To investigate the cardioprotective effect of beta-glucan against isoproterenol-induced cardiotoxicity in rats, and elucidate the underlying mechanism. Methods: Rats were orally pretreated with beta-glucan (40 mg/kg body weight) for 30 d, and isoproterenol (20 mg/100 g body weight) was administered on days 31 and 32. The effects of beta-glucan on markers of cardiac injury, hemodynamic changes, production of proinflammatory cytokines, and the corresponding mRNA expressions were evaluated. In addition, histological analysis was performed. Results: Pretreatment with beta-glucan prevented isoproterenol-induced cardiac injury by preserving the structural and functional integrity of the plasma membrane and attenuating the production of proinflammatory cytokines (NF-κB, TNF-α, IL-6, IL-Ιβ, and IFN-γ) in the heart. Moreover, beta-glucan significantly downregulated the mRNA expression of ACE, AT1R, TNF-α, IL-6, NF-κB, caspase-3, TLR-4, and Bax, and upregulated Bcl-2 in the heart. At the same time, pretreatment with beta-glucan alleviated myocardial damage as reflected in a reduction in myonecrosis, edema, and erythrocyte extravasation with almost imperceptible inflammation. Conclusions: Beta-glucan can protect against isoproterenol-induced cardiotoxicity by attenuating cardiac inflammation and apoptosis and regulating the ACE-AT1R axis, thereby preventing cardiac remodeling.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":"57 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beta-glucan protects against isoproterenol-induced cardiac remodeling by regulating the ACE-AT<sub>1</sub>R axis and attenuates cardiac inflammation and apoptosis\",\"authors\":\"Sengottuvelu Singaravel, Anitha Roy, VasanthaMallenahalli Neelakantappa, Jayashree Ganesan, BalakrishnanRamajayam Asokan, Srinivasan Kulandaivel, V VSathibabu Uddandrao\",\"doi\":\"10.4103/2221-1691.385569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: To investigate the cardioprotective effect of beta-glucan against isoproterenol-induced cardiotoxicity in rats, and elucidate the underlying mechanism. Methods: Rats were orally pretreated with beta-glucan (40 mg/kg body weight) for 30 d, and isoproterenol (20 mg/100 g body weight) was administered on days 31 and 32. The effects of beta-glucan on markers of cardiac injury, hemodynamic changes, production of proinflammatory cytokines, and the corresponding mRNA expressions were evaluated. In addition, histological analysis was performed. Results: Pretreatment with beta-glucan prevented isoproterenol-induced cardiac injury by preserving the structural and functional integrity of the plasma membrane and attenuating the production of proinflammatory cytokines (NF-κB, TNF-α, IL-6, IL-Ιβ, and IFN-γ) in the heart. Moreover, beta-glucan significantly downregulated the mRNA expression of ACE, AT1R, TNF-α, IL-6, NF-κB, caspase-3, TLR-4, and Bax, and upregulated Bcl-2 in the heart. At the same time, pretreatment with beta-glucan alleviated myocardial damage as reflected in a reduction in myonecrosis, edema, and erythrocyte extravasation with almost imperceptible inflammation. Conclusions: Beta-glucan can protect against isoproterenol-induced cardiotoxicity by attenuating cardiac inflammation and apoptosis and regulating the ACE-AT1R axis, thereby preventing cardiac remodeling.\",\"PeriodicalId\":8560,\"journal\":{\"name\":\"Asian Pacific journal of tropical biomedicine\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Pacific journal of tropical biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2221-1691.385569\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TROPICAL MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Pacific journal of tropical biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2221-1691.385569","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TROPICAL MEDICINE","Score":null,"Total":0}
Beta-glucan protects against isoproterenol-induced cardiac remodeling by regulating the ACE-AT1R axis and attenuates cardiac inflammation and apoptosis
Objective: To investigate the cardioprotective effect of beta-glucan against isoproterenol-induced cardiotoxicity in rats, and elucidate the underlying mechanism. Methods: Rats were orally pretreated with beta-glucan (40 mg/kg body weight) for 30 d, and isoproterenol (20 mg/100 g body weight) was administered on days 31 and 32. The effects of beta-glucan on markers of cardiac injury, hemodynamic changes, production of proinflammatory cytokines, and the corresponding mRNA expressions were evaluated. In addition, histological analysis was performed. Results: Pretreatment with beta-glucan prevented isoproterenol-induced cardiac injury by preserving the structural and functional integrity of the plasma membrane and attenuating the production of proinflammatory cytokines (NF-κB, TNF-α, IL-6, IL-Ιβ, and IFN-γ) in the heart. Moreover, beta-glucan significantly downregulated the mRNA expression of ACE, AT1R, TNF-α, IL-6, NF-κB, caspase-3, TLR-4, and Bax, and upregulated Bcl-2 in the heart. At the same time, pretreatment with beta-glucan alleviated myocardial damage as reflected in a reduction in myonecrosis, edema, and erythrocyte extravasation with almost imperceptible inflammation. Conclusions: Beta-glucan can protect against isoproterenol-induced cardiotoxicity by attenuating cardiac inflammation and apoptosis and regulating the ACE-AT1R axis, thereby preventing cardiac remodeling.
期刊介绍:
The journal will cover technical and clinical studies related to health, ethical and social issues in field of biology, bacteriology, biochemistry, biotechnology, cell biology, environmental biology, microbiology, medical microbiology, pharmacology, physiology, pathology, immunology, virology, toxicology, epidemiology, vaccinology, hematology, histopathology, cytology, genetics and tropical agriculture. Articles with clinical interest and implications will be given preference.