基于Gabor特征的相关信息高光谱图像分类

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-01-02 DOI:10.1080/07038992.2023.2246158
Jianshang Liao, Liguo Wang, Genping Zhao
{"title":"基于Gabor特征的相关信息高光谱图像分类","authors":"Jianshang Liao, Liguo Wang, Genping Zhao","doi":"10.1080/07038992.2023.2246158","DOIUrl":null,"url":null,"abstract":"Gabor filter is widely used to extract spatial texture features of hyperspectral images (HSI) for HSI classification; however, a single Gabor filter cannot obtain the complete image features. In the paper, we propose an HSI classification method that combines the Gabor filter (GF) and domain-transformation standard convolution (DTNC) filter. First, we use the Gabor filter to extract spatial texture features from the first two principal components of the dimensionality-reduction HSI with PCA. Second, we use the DTNC filter to extract spatial correlation features from HSI in all bands. Finally, the Large Margin Distribution Machine (LDM) uses the linear fusion of the two kinds of spatial features to classify HSI. The experimental results show that the classification accuracy of Indian Pines, Pavia University, and Kennedy Space Center data sets is 96.64, 98.23, and 98.95% with only 4, 3, and 6% training samples, respectively; and these accuracies are 2–20% higher than the other tested methods. Compared with the hyperspectral information based on SVM, EPF, IFRF, PCA-EPFs, LDM-FL, and GFDN method, the proposed method, GFDTNCLDM, significantly improves the accuracy of HSI classification.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral Image Classification Based on the Gabor Feature with Correlation Information\",\"authors\":\"Jianshang Liao, Liguo Wang, Genping Zhao\",\"doi\":\"10.1080/07038992.2023.2246158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gabor filter is widely used to extract spatial texture features of hyperspectral images (HSI) for HSI classification; however, a single Gabor filter cannot obtain the complete image features. In the paper, we propose an HSI classification method that combines the Gabor filter (GF) and domain-transformation standard convolution (DTNC) filter. First, we use the Gabor filter to extract spatial texture features from the first two principal components of the dimensionality-reduction HSI with PCA. Second, we use the DTNC filter to extract spatial correlation features from HSI in all bands. Finally, the Large Margin Distribution Machine (LDM) uses the linear fusion of the two kinds of spatial features to classify HSI. The experimental results show that the classification accuracy of Indian Pines, Pavia University, and Kennedy Space Center data sets is 96.64, 98.23, and 98.95% with only 4, 3, and 6% training samples, respectively; and these accuracies are 2–20% higher than the other tested methods. Compared with the hyperspectral information based on SVM, EPF, IFRF, PCA-EPFs, LDM-FL, and GFDN method, the proposed method, GFDTNCLDM, significantly improves the accuracy of HSI classification.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2023.2246158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07038992.2023.2246158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

Gabor滤波器被广泛用于提取高光谱图像的空间纹理特征,用于高光谱图像分类;然而,单一的Gabor滤波器无法获得完整的图像特征。本文提出了一种结合Gabor滤波器(GF)和域变换标准卷积滤波器(DTNC)的HSI分类方法。首先,我们使用Gabor滤波器从PCA降维HSI的前两个主成分中提取空间纹理特征。其次,我们使用DTNC滤波器从所有波段的HSI中提取空间相关特征。最后,利用大边际分布机(LDM)对两类空间特征进行线性融合,对恒生指数进行分类。实验结果表明,仅使用4个、3个和6%的训练样本,印第安松树、帕维亚大学和肯尼迪航天中心数据集的分类准确率分别为96.64、98.23和98.95%;与其他测试方法相比,准确度提高了2-20%。与基于SVM、EPF、IFRF、pca -EPF、LDM-FL和GFDN方法的高光谱信息相比,GFDTNCLDM方法显著提高了HSI分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral Image Classification Based on the Gabor Feature with Correlation Information
Gabor filter is widely used to extract spatial texture features of hyperspectral images (HSI) for HSI classification; however, a single Gabor filter cannot obtain the complete image features. In the paper, we propose an HSI classification method that combines the Gabor filter (GF) and domain-transformation standard convolution (DTNC) filter. First, we use the Gabor filter to extract spatial texture features from the first two principal components of the dimensionality-reduction HSI with PCA. Second, we use the DTNC filter to extract spatial correlation features from HSI in all bands. Finally, the Large Margin Distribution Machine (LDM) uses the linear fusion of the two kinds of spatial features to classify HSI. The experimental results show that the classification accuracy of Indian Pines, Pavia University, and Kennedy Space Center data sets is 96.64, 98.23, and 98.95% with only 4, 3, and 6% training samples, respectively; and these accuracies are 2–20% higher than the other tested methods. Compared with the hyperspectral information based on SVM, EPF, IFRF, PCA-EPFs, LDM-FL, and GFDN method, the proposed method, GFDTNCLDM, significantly improves the accuracy of HSI classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1