使用机器学习方法估计教育回报-不同地区的证据

Q2 Social Sciences Open Education Studies Pub Date : 2023-01-01 DOI:10.1515/edu-2022-0201
Herve D. Teguim Kamdjou
{"title":"使用机器学习方法估计教育回报-不同地区的证据","authors":"Herve D. Teguim Kamdjou","doi":"10.1515/edu-2022-0201","DOIUrl":null,"url":null,"abstract":"Abstract This article revisits the Mincer earnings function and presents comparable estimates of the average monetary returns associated with an additional year of education across different regions worldwide. In contrast to the traditional Ordinary Least Squares (OLS) method commonly employed in the literature, this study applied a cutting-edge approach known as Support Vector Regression (SVR), which belongs to the family of machine learning (ML) algorithms. SVR is specifically chosen to address the bias arising from underfitting inherent in OLS. The analysis focuses on recent data spanning from 2010 to 2018, ensuring temporal homogeneity across the examined regions. The findings reveal that each additional year of education, on average, yields a private rate of returns of 10.4%. Notably, Sub-Saharan Africa exhibits the highest returns to education at 17.8%, while Europe demonstrates the lowest returns at 7.2%. Moreover, higher education is associated with the highest returns across the regions, with a rate of 12%, whereas primary education yields returns of 10%. Interestingly, women generally experience higher returns than men, with rates of 10.6 and 10.1%, respectively. Over time, the returns to education exhibit a modest decline, decreasing at a rate of approximately 0.1% per year, while the average duration of education demonstrates an increase of 0.16 years per year (1% per year). The application of the state-of-the-art ML technique, SVR, not only improves the accuracy of estimates but also enhances predictive performance measures such as the coefficient of determination ( R 2 ) and Root Mean Square Error (RMSE) when compared to the OLS method. The implications drawn from these findings emphasize the need for expanding university education, as well as investments in primary education, along with significant attention toward promoting girls’ education. These findings hold considerable importance for policymakers who are tasked with making informed decisions regarding education expenditure and the implementation of education financing programs.","PeriodicalId":33645,"journal":{"name":"Open Education Studies","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the Returns to Education Using a Machine Learning Approach – Evidence for Different Regions\",\"authors\":\"Herve D. Teguim Kamdjou\",\"doi\":\"10.1515/edu-2022-0201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article revisits the Mincer earnings function and presents comparable estimates of the average monetary returns associated with an additional year of education across different regions worldwide. In contrast to the traditional Ordinary Least Squares (OLS) method commonly employed in the literature, this study applied a cutting-edge approach known as Support Vector Regression (SVR), which belongs to the family of machine learning (ML) algorithms. SVR is specifically chosen to address the bias arising from underfitting inherent in OLS. The analysis focuses on recent data spanning from 2010 to 2018, ensuring temporal homogeneity across the examined regions. The findings reveal that each additional year of education, on average, yields a private rate of returns of 10.4%. Notably, Sub-Saharan Africa exhibits the highest returns to education at 17.8%, while Europe demonstrates the lowest returns at 7.2%. Moreover, higher education is associated with the highest returns across the regions, with a rate of 12%, whereas primary education yields returns of 10%. Interestingly, women generally experience higher returns than men, with rates of 10.6 and 10.1%, respectively. Over time, the returns to education exhibit a modest decline, decreasing at a rate of approximately 0.1% per year, while the average duration of education demonstrates an increase of 0.16 years per year (1% per year). The application of the state-of-the-art ML technique, SVR, not only improves the accuracy of estimates but also enhances predictive performance measures such as the coefficient of determination ( R 2 ) and Root Mean Square Error (RMSE) when compared to the OLS method. The implications drawn from these findings emphasize the need for expanding university education, as well as investments in primary education, along with significant attention toward promoting girls’ education. These findings hold considerable importance for policymakers who are tasked with making informed decisions regarding education expenditure and the implementation of education financing programs.\",\"PeriodicalId\":33645,\"journal\":{\"name\":\"Open Education Studies\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Education Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/edu-2022-0201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Education Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/edu-2022-0201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文重新审视了Mincer收益函数,并对全球不同地区与额外一年教育相关的平均货币回报进行了可比估计。与文献中常用的传统普通最小二乘(OLS)方法相比,本研究采用了一种称为支持向量回归(SVR)的前沿方法,该方法属于机器学习(ML)算法家族。特别选择SVR来解决OLS固有的欠拟合引起的偏差。该分析侧重于2010年至2018年的最新数据,以确保所调查地区的时间同质性。研究结果显示,平均每增加一年的教育,个人回报率为10.4%。值得注意的是,撒哈拉以南非洲的教育回报率最高,为17.8%,而欧洲的回报率最低,为7.2%。此外,高等教育在各地区的回报率最高,为12%,而初等教育的回报率为10%。有趣的是,女性的回报率普遍高于男性,分别为10.6%和10.1%。随着时间的推移,教育回报表现出适度的下降,以每年约0.1%的速度下降,而平均教育持续时间每年增加0.16年(每年1%)。与OLS方法相比,最先进的机器学习技术SVR的应用不仅提高了估计的准确性,而且增强了预测性能指标,如决定系数(r2)和均方根误差(RMSE)。从这些调查结果中得出的结论强调需要扩大大学教育,以及对初等教育的投资,同时对促进女童教育给予重大关注。这些发现对于负责就教育支出和实施教育融资计划做出明智决策的政策制定者具有相当重要的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating the Returns to Education Using a Machine Learning Approach – Evidence for Different Regions
Abstract This article revisits the Mincer earnings function and presents comparable estimates of the average monetary returns associated with an additional year of education across different regions worldwide. In contrast to the traditional Ordinary Least Squares (OLS) method commonly employed in the literature, this study applied a cutting-edge approach known as Support Vector Regression (SVR), which belongs to the family of machine learning (ML) algorithms. SVR is specifically chosen to address the bias arising from underfitting inherent in OLS. The analysis focuses on recent data spanning from 2010 to 2018, ensuring temporal homogeneity across the examined regions. The findings reveal that each additional year of education, on average, yields a private rate of returns of 10.4%. Notably, Sub-Saharan Africa exhibits the highest returns to education at 17.8%, while Europe demonstrates the lowest returns at 7.2%. Moreover, higher education is associated with the highest returns across the regions, with a rate of 12%, whereas primary education yields returns of 10%. Interestingly, women generally experience higher returns than men, with rates of 10.6 and 10.1%, respectively. Over time, the returns to education exhibit a modest decline, decreasing at a rate of approximately 0.1% per year, while the average duration of education demonstrates an increase of 0.16 years per year (1% per year). The application of the state-of-the-art ML technique, SVR, not only improves the accuracy of estimates but also enhances predictive performance measures such as the coefficient of determination ( R 2 ) and Root Mean Square Error (RMSE) when compared to the OLS method. The implications drawn from these findings emphasize the need for expanding university education, as well as investments in primary education, along with significant attention toward promoting girls’ education. These findings hold considerable importance for policymakers who are tasked with making informed decisions regarding education expenditure and the implementation of education financing programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Education Studies
Open Education Studies Social Sciences-Social Sciences (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
19
审稿时长
27 weeks
期刊最新文献
“Why are These Problems Still Unresolved?” Those Pending Problems, and Neglected Contradictions in Online Classroom in the Post-COVID-19 Era Limits of Metacognitive Prompts for Confidence Judgments in an Interactive Learning Environment Fostering Creativity in Higher Education Institution: A Systematic Review (2018–2022) The Flipped Classroom Optimized Through Gamification and Team-Based Learning Deconstructing Teacher Engagement Techniques for Pre-service Teachers through Explicitly Teaching and Applying “Noticing” in Video Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1