{"title":"面部和身体手势识别确定学生的注意力水平","authors":"Xian Yang Chan, Tee Connie, Michael Kah Ong Goh","doi":"10.18517/ijaseit.13.5.19035","DOIUrl":null,"url":null,"abstract":"Online learning has gained immense popularity, especially since the COVID-19 pandemic. However, it has also brought its own set of challenges. One of the critical challenges in online learning is the ability to evaluate students' concentration levels during virtual classes. Unlike traditional brick-and-mortar classrooms, teachers do not have the advantage of observing students' body language and facial expressions to determine whether they are paying attention. To address this challenge, this study proposes utilizing facial and body gestures to evaluate students' concentration levels. Common gestures such as yawning, playing with fingers or objects, and looking away from the screen indicate a lack of focus. A dataset containing images of students performing various actions and gestures representing different concentration levels is collected. We propose an enhanced model based on a vision transformer (RViT) to classify the concentration levels. This model incorporates a majority voting feature to maintain real-time prediction accuracy. This feature classifies multiple frames, and the final prediction is based on the majority class. The proposed method yields a promising 92% accuracy while maintaining efficient computational performance. The system provides an unbiased measure for assessing students' concentration levels, which can be useful in educational settings to improve learning outcomes. It enables educators to foster a more engaging and productive virtual classroom environment.","PeriodicalId":14471,"journal":{"name":"International Journal on Advanced Science, Engineering and Information Technology","volume":"60 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facial and Body Gesture Recognition for Determining Student Concentration Level\",\"authors\":\"Xian Yang Chan, Tee Connie, Michael Kah Ong Goh\",\"doi\":\"10.18517/ijaseit.13.5.19035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online learning has gained immense popularity, especially since the COVID-19 pandemic. However, it has also brought its own set of challenges. One of the critical challenges in online learning is the ability to evaluate students' concentration levels during virtual classes. Unlike traditional brick-and-mortar classrooms, teachers do not have the advantage of observing students' body language and facial expressions to determine whether they are paying attention. To address this challenge, this study proposes utilizing facial and body gestures to evaluate students' concentration levels. Common gestures such as yawning, playing with fingers or objects, and looking away from the screen indicate a lack of focus. A dataset containing images of students performing various actions and gestures representing different concentration levels is collected. We propose an enhanced model based on a vision transformer (RViT) to classify the concentration levels. This model incorporates a majority voting feature to maintain real-time prediction accuracy. This feature classifies multiple frames, and the final prediction is based on the majority class. The proposed method yields a promising 92% accuracy while maintaining efficient computational performance. The system provides an unbiased measure for assessing students' concentration levels, which can be useful in educational settings to improve learning outcomes. It enables educators to foster a more engaging and productive virtual classroom environment.\",\"PeriodicalId\":14471,\"journal\":{\"name\":\"International Journal on Advanced Science, Engineering and Information Technology\",\"volume\":\"60 18\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Advanced Science, Engineering and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18517/ijaseit.13.5.19035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Advanced Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18517/ijaseit.13.5.19035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Facial and Body Gesture Recognition for Determining Student Concentration Level
Online learning has gained immense popularity, especially since the COVID-19 pandemic. However, it has also brought its own set of challenges. One of the critical challenges in online learning is the ability to evaluate students' concentration levels during virtual classes. Unlike traditional brick-and-mortar classrooms, teachers do not have the advantage of observing students' body language and facial expressions to determine whether they are paying attention. To address this challenge, this study proposes utilizing facial and body gestures to evaluate students' concentration levels. Common gestures such as yawning, playing with fingers or objects, and looking away from the screen indicate a lack of focus. A dataset containing images of students performing various actions and gestures representing different concentration levels is collected. We propose an enhanced model based on a vision transformer (RViT) to classify the concentration levels. This model incorporates a majority voting feature to maintain real-time prediction accuracy. This feature classifies multiple frames, and the final prediction is based on the majority class. The proposed method yields a promising 92% accuracy while maintaining efficient computational performance. The system provides an unbiased measure for assessing students' concentration levels, which can be useful in educational settings to improve learning outcomes. It enables educators to foster a more engaging and productive virtual classroom environment.
期刊介绍:
International Journal on Advanced Science, Engineering and Information Technology (IJASEIT) is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of science, engineering and information technology. The journal publishes state-of-art papers in fundamental theory, experiments and simulation, as well as applications, with a systematic proposed method, sufficient review on previous works, expanded discussion and concise conclusion. As our commitment to the advancement of science and technology, the IJASEIT follows the open access policy that allows the published articles freely available online without any subscription. The journal scopes include (but not limited to) the followings: -Science: Bioscience & Biotechnology. Chemistry & Food Technology, Environmental, Health Science, Mathematics & Statistics, Applied Physics -Engineering: Architecture, Chemical & Process, Civil & structural, Electrical, Electronic & Systems, Geological & Mining Engineering, Mechanical & Materials -Information Science & Technology: Artificial Intelligence, Computer Science, E-Learning & Multimedia, Information System, Internet & Mobile Computing