利用国际空间站上的阿尔法磁谱仪实时监测太阳高能粒子

Q3 Physics and Astronomy Instruments Pub Date : 2023-10-31 DOI:10.3390/instruments7040038
Andrea Serpolla, Matteo Duranti, Valerio Formato, Alberto Oliva
{"title":"利用国际空间站上的阿尔法磁谱仪实时监测太阳高能粒子","authors":"Andrea Serpolla, Matteo Duranti, Valerio Formato, Alberto Oliva","doi":"10.3390/instruments7040038","DOIUrl":null,"url":null,"abstract":"The International Space Station (ISS) orbits at an average altitude of 400 km, in the Low Earth Orbit (LEO) and is regularly occupied by astronauts. The material of the Station, the residual atmosphere and the geomagnetic field offer a partial protection against the cosmic radiation to the crew and the equipment. The solar activity can cause sporadic bursts of particles with energies between ∼10 keV and several GeVs called Solar Energetic Particles (SEPs). SEP emissions can last for hours or even days and can represent an actual risk for ISS occupants and equipment. The Alpha Magnetic Spectrometer (AMS) was installed on the ISS in 2011 and is expected to take data until the decommissioning of the Station itself. The instrument detects cosmic rays continuously and can also be used to monitor SEPs in real-time. A detection algorithm developed for the monitoring measures temporary increases in the trigger rates of AMS, using McIlwain’s L-parameter to characterize different conditions of the data-taking environment. A real-time monitor for SEPs has been realized reading data from the AMS Monitoring Interface (AMI) database and processing them using the custom algorithm that was developed.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Monitoring of Solar Energetic Particles Using the Alpha Magnetic Spectrometer on the International Space Station\",\"authors\":\"Andrea Serpolla, Matteo Duranti, Valerio Formato, Alberto Oliva\",\"doi\":\"10.3390/instruments7040038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The International Space Station (ISS) orbits at an average altitude of 400 km, in the Low Earth Orbit (LEO) and is regularly occupied by astronauts. The material of the Station, the residual atmosphere and the geomagnetic field offer a partial protection against the cosmic radiation to the crew and the equipment. The solar activity can cause sporadic bursts of particles with energies between ∼10 keV and several GeVs called Solar Energetic Particles (SEPs). SEP emissions can last for hours or even days and can represent an actual risk for ISS occupants and equipment. The Alpha Magnetic Spectrometer (AMS) was installed on the ISS in 2011 and is expected to take data until the decommissioning of the Station itself. The instrument detects cosmic rays continuously and can also be used to monitor SEPs in real-time. A detection algorithm developed for the monitoring measures temporary increases in the trigger rates of AMS, using McIlwain’s L-parameter to characterize different conditions of the data-taking environment. A real-time monitor for SEPs has been realized reading data from the AMS Monitoring Interface (AMI) database and processing them using the custom algorithm that was developed.\",\"PeriodicalId\":13582,\"journal\":{\"name\":\"Instruments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/instruments7040038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments7040038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

国际空间站(ISS)的轨道平均高度为400公里,位于近地轨道(LEO),经常由宇航员居住。空间站的材料、残留的大气层和地磁场为机组人员和设备提供了抵御宇宙辐射的部分保护。太阳活动可以引起能量在~ 10 keV和几个gev之间的粒子的零星爆发,称为太阳高能粒子(sep)。SEP排放可以持续数小时甚至数天,并可能对国际空间站的居住者和设备构成实际风险。阿尔法磁谱仪(AMS)于2011年安装在国际空间站上,预计将在空间站本身退役之前收集数据。该仪器连续探测宇宙射线,也可用于实时监测sep。为监测而开发的一种检测算法使用McIlwain的l参数来表征数据采集环境的不同条件,测量AMS触发率的暂时增加。实现了从AMS监测接口(AMI)数据库中读取数据,并采用自定义算法对数据进行处理,实现了对sep的实时监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Monitoring of Solar Energetic Particles Using the Alpha Magnetic Spectrometer on the International Space Station
The International Space Station (ISS) orbits at an average altitude of 400 km, in the Low Earth Orbit (LEO) and is regularly occupied by astronauts. The material of the Station, the residual atmosphere and the geomagnetic field offer a partial protection against the cosmic radiation to the crew and the equipment. The solar activity can cause sporadic bursts of particles with energies between ∼10 keV and several GeVs called Solar Energetic Particles (SEPs). SEP emissions can last for hours or even days and can represent an actual risk for ISS occupants and equipment. The Alpha Magnetic Spectrometer (AMS) was installed on the ISS in 2011 and is expected to take data until the decommissioning of the Station itself. The instrument detects cosmic rays continuously and can also be used to monitor SEPs in real-time. A detection algorithm developed for the monitoring measures temporary increases in the trigger rates of AMS, using McIlwain’s L-parameter to characterize different conditions of the data-taking environment. A real-time monitor for SEPs has been realized reading data from the AMS Monitoring Interface (AMI) database and processing them using the custom algorithm that was developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Instruments
Instruments Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
0.00%
发文量
70
审稿时长
11 weeks
期刊最新文献
Red and Green Laser Powder Bed Fusion of Pure Copper in Combination with Chemical Post-Processing for RF Cavity Fabrication Improved Production of Novel Radioisotopes with Custom Energy Cyclone® Kiube High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence Microparticle Hybrid Target Simulation for keV X-ray Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1