Giuseppe Vitrani, Simone Cortinovis, Luca Fiorio, Marco Maggiali, Rocco Antonio Romeo
{"title":"改进机器人抓手的抓握力行为:模型、仿真和实验","authors":"Giuseppe Vitrani, Simone Cortinovis, Luca Fiorio, Marco Maggiali, Rocco Antonio Romeo","doi":"10.3390/robotics12060148","DOIUrl":null,"url":null,"abstract":"Robotic grippers allow industrial robots to interact with the surrounding environment. However, control architectures of the grasping force are still rare in common industrial grippers. In this context, one or more sensors (e.g., force or torque sensors) are necessary. However, the incorporation of such sensors might heavily affect the cost of the gripper, regardless of its type (e.g., pneumatic or electric). An alternative approach could be open-loop force control strategies. Hence, this work proposes an approach for optimizing the open-loop grasping force behavior of a robotic gripper. For this purpose, a specialized robotic gripper was built, as well as its mathematical model. The model was employed to predict the gripper performance during both static and dynamic force characterization, simulating grasping tasks under different experimental conditions. Both simulated and experimental results showed that by managing the mechanical properties of the finger–object contact interface (e.g., stiffness), the steady-state force variability could be greatly reduced, as well as undesired effects such as finger bouncing. Further, the object’s size is not required unlike most of the grasping approaches for industrial rigid grippers, which often involve high finger velocities. These results may pave the way toward conceiving cheaper and more reliable open-loop force control techniques for use in robotic grippers.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"129 5","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Grasping Force Behavior of a Robotic Gripper: Model, Simulations, and Experiments\",\"authors\":\"Giuseppe Vitrani, Simone Cortinovis, Luca Fiorio, Marco Maggiali, Rocco Antonio Romeo\",\"doi\":\"10.3390/robotics12060148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic grippers allow industrial robots to interact with the surrounding environment. However, control architectures of the grasping force are still rare in common industrial grippers. In this context, one or more sensors (e.g., force or torque sensors) are necessary. However, the incorporation of such sensors might heavily affect the cost of the gripper, regardless of its type (e.g., pneumatic or electric). An alternative approach could be open-loop force control strategies. Hence, this work proposes an approach for optimizing the open-loop grasping force behavior of a robotic gripper. For this purpose, a specialized robotic gripper was built, as well as its mathematical model. The model was employed to predict the gripper performance during both static and dynamic force characterization, simulating grasping tasks under different experimental conditions. Both simulated and experimental results showed that by managing the mechanical properties of the finger–object contact interface (e.g., stiffness), the steady-state force variability could be greatly reduced, as well as undesired effects such as finger bouncing. Further, the object’s size is not required unlike most of the grasping approaches for industrial rigid grippers, which often involve high finger velocities. These results may pave the way toward conceiving cheaper and more reliable open-loop force control techniques for use in robotic grippers.\",\"PeriodicalId\":37568,\"journal\":{\"name\":\"Robotics\",\"volume\":\"129 5\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/robotics12060148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12060148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Improving the Grasping Force Behavior of a Robotic Gripper: Model, Simulations, and Experiments
Robotic grippers allow industrial robots to interact with the surrounding environment. However, control architectures of the grasping force are still rare in common industrial grippers. In this context, one or more sensors (e.g., force or torque sensors) are necessary. However, the incorporation of such sensors might heavily affect the cost of the gripper, regardless of its type (e.g., pneumatic or electric). An alternative approach could be open-loop force control strategies. Hence, this work proposes an approach for optimizing the open-loop grasping force behavior of a robotic gripper. For this purpose, a specialized robotic gripper was built, as well as its mathematical model. The model was employed to predict the gripper performance during both static and dynamic force characterization, simulating grasping tasks under different experimental conditions. Both simulated and experimental results showed that by managing the mechanical properties of the finger–object contact interface (e.g., stiffness), the steady-state force variability could be greatly reduced, as well as undesired effects such as finger bouncing. Further, the object’s size is not required unlike most of the grasping approaches for industrial rigid grippers, which often involve high finger velocities. These results may pave the way toward conceiving cheaper and more reliable open-loop force control techniques for use in robotic grippers.
期刊介绍:
Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM