参数不确定性对双馈感应发电机风能转换系统动态性能的影响分析

IF 1.5 Q4 ENERGY & FUELS Wind Engineering Pub Date : 2023-10-31 DOI:10.1177/0309524x231201526
Endalew Ayenew Haile, Milkias Berhanu Tuka
{"title":"参数不确定性对双馈感应发电机风能转换系统动态性能的影响分析","authors":"Endalew Ayenew Haile, Milkias Berhanu Tuka","doi":"10.1177/0309524x231201526","DOIUrl":null,"url":null,"abstract":"The wind, stochastic in nature, is one of the fastest-growing and most promising renewable energy resources in the entire world. Thus, this paper investigates the influence of parameter uncertainties upon a dynamic performance of a grid-tied Doubly-Fed Induction Generator (DFIG)-based Wind Energy Conversion System (WECS). The main uncertain parameters found in the study are mutual and rotor winding reactances which occurred due to the variation of the angular positions of the rotor caused by varying wind speeds. The variation in the wind speed caused the generator rotor speed to deviate between 25% and 150%. Consequently, the rotor winding reactance of DFIG changes from its nominal value of 1.31 mΩ to between 0.983 and −0.655 mΩ; and the mutual reactance from its nominal value of 0.941 Ω to between 0.758 and −0.4708 Ω. As a result, the stator and rotor winding voltages and currents of the DFIG are uncertain.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"433 ","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the effect of parametric uncertainty on dynamic performances of doubly fed induction generator-based wind energy conversion system\",\"authors\":\"Endalew Ayenew Haile, Milkias Berhanu Tuka\",\"doi\":\"10.1177/0309524x231201526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wind, stochastic in nature, is one of the fastest-growing and most promising renewable energy resources in the entire world. Thus, this paper investigates the influence of parameter uncertainties upon a dynamic performance of a grid-tied Doubly-Fed Induction Generator (DFIG)-based Wind Energy Conversion System (WECS). The main uncertain parameters found in the study are mutual and rotor winding reactances which occurred due to the variation of the angular positions of the rotor caused by varying wind speeds. The variation in the wind speed caused the generator rotor speed to deviate between 25% and 150%. Consequently, the rotor winding reactance of DFIG changes from its nominal value of 1.31 mΩ to between 0.983 and −0.655 mΩ; and the mutual reactance from its nominal value of 0.941 Ω to between 0.758 and −0.4708 Ω. As a result, the stator and rotor winding voltages and currents of the DFIG are uncertain.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"433 \",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524x231201526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x231201526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

风能具有随机性,是世界上发展最快、最有前途的可再生能源之一。因此,本文研究了参数不确定性对并网双馈感应发电机(DFIG)风能转换系统(WECS)动态性能的影响。研究中发现的主要不确定参数是互绕组和转子绕组的电抗,这是由于不同风速引起转子角位置的变化而产生的。风速的变化导致发电机转子转速偏差在25% ~ 150%之间。因此,DFIG的转子绕组电抗从其标称值1.31 mΩ变化到0.983 ~ - 0.655 mΩ之间;并且互抗从其标称值0.941 Ω到0.758 ~ - 0.4708 Ω之间。因此,DFIG的定子和转子绕组的电压和电流是不确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the effect of parametric uncertainty on dynamic performances of doubly fed induction generator-based wind energy conversion system
The wind, stochastic in nature, is one of the fastest-growing and most promising renewable energy resources in the entire world. Thus, this paper investigates the influence of parameter uncertainties upon a dynamic performance of a grid-tied Doubly-Fed Induction Generator (DFIG)-based Wind Energy Conversion System (WECS). The main uncertain parameters found in the study are mutual and rotor winding reactances which occurred due to the variation of the angular positions of the rotor caused by varying wind speeds. The variation in the wind speed caused the generator rotor speed to deviate between 25% and 150%. Consequently, the rotor winding reactance of DFIG changes from its nominal value of 1.31 mΩ to between 0.983 and −0.655 mΩ; and the mutual reactance from its nominal value of 0.941 Ω to between 0.758 and −0.4708 Ω. As a result, the stator and rotor winding voltages and currents of the DFIG are uncertain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
期刊最新文献
Extended state observer-based primary load frequency controller for power systems with ultra-high wind-energy penetration Quantifying the impact of sensor precision on power output of a wind turbine: A sensitivity analysis via Monte Carlo simulation study Design and realization of a pre-production platform for wind turbine manufacturing Analysis of wind power curve modeling using multi-model regression On the aerodynamics of dual-stage co-axial vertical-axis wind turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1