Md Irfanul Haque Siddiqui, Ibrahim Abdullah Alnaser, Khalid Alluhydan
{"title":"碳纤维假体运行叶片可靠性评估","authors":"Md Irfanul Haque Siddiqui, Ibrahim Abdullah Alnaser, Khalid Alluhydan","doi":"10.17531/ein/172668","DOIUrl":null,"url":null,"abstract":"This study focuses on the development of a reliable prosthetic running blade primarily composed of carbon fiber. The reliable performance of novel prosthetic running blades has been evaluated by mechanical testing and finite element numerical modeling. The experimental analysis confirmed that these blades exhibit superior suitability for high-impact activities, demonstrating reliable load-bearing capacity and effective shock absorption properties. The tensile testing exhibited a linear elastic behavior of the composite material up to a strain of 0.075 mm/mm. Further, it was found that stress concentration areas and fracture points within the blade structure. Furthermore, numerical results revealed a maximum deflection of 29.60 mm that the blade can achieve. The kinetic energy loss during impact demonstrated an 8.5% decrease in blade kinetic energy, with the highest loss occurring at Vy = 30 m/s. Ultimately, this research aims to enhance the reliability, durability, and safety of prosthetic running blades, empowering athletes to reach new heights in sports.","PeriodicalId":50549,"journal":{"name":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","volume":"8 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of a Carbon Fiber Prosthetic Running Blade for Enhanced Reliability\",\"authors\":\"Md Irfanul Haque Siddiqui, Ibrahim Abdullah Alnaser, Khalid Alluhydan\",\"doi\":\"10.17531/ein/172668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the development of a reliable prosthetic running blade primarily composed of carbon fiber. The reliable performance of novel prosthetic running blades has been evaluated by mechanical testing and finite element numerical modeling. The experimental analysis confirmed that these blades exhibit superior suitability for high-impact activities, demonstrating reliable load-bearing capacity and effective shock absorption properties. The tensile testing exhibited a linear elastic behavior of the composite material up to a strain of 0.075 mm/mm. Further, it was found that stress concentration areas and fracture points within the blade structure. Furthermore, numerical results revealed a maximum deflection of 29.60 mm that the blade can achieve. The kinetic energy loss during impact demonstrated an 8.5% decrease in blade kinetic energy, with the highest loss occurring at Vy = 30 m/s. Ultimately, this research aims to enhance the reliability, durability, and safety of prosthetic running blades, empowering athletes to reach new heights in sports.\",\"PeriodicalId\":50549,\"journal\":{\"name\":\"Eksploatacja I Niezawodnosc-Maintenance and Reliability\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja I Niezawodnosc-Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/172668\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/172668","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessment of a Carbon Fiber Prosthetic Running Blade for Enhanced Reliability
This study focuses on the development of a reliable prosthetic running blade primarily composed of carbon fiber. The reliable performance of novel prosthetic running blades has been evaluated by mechanical testing and finite element numerical modeling. The experimental analysis confirmed that these blades exhibit superior suitability for high-impact activities, demonstrating reliable load-bearing capacity and effective shock absorption properties. The tensile testing exhibited a linear elastic behavior of the composite material up to a strain of 0.075 mm/mm. Further, it was found that stress concentration areas and fracture points within the blade structure. Furthermore, numerical results revealed a maximum deflection of 29.60 mm that the blade can achieve. The kinetic energy loss during impact demonstrated an 8.5% decrease in blade kinetic energy, with the highest loss occurring at Vy = 30 m/s. Ultimately, this research aims to enhance the reliability, durability, and safety of prosthetic running blades, empowering athletes to reach new heights in sports.
期刊介绍:
The quarterly Eksploatacja i Niezawodność – Maintenance and Reliability publishes articles containing original results of experimental research on the durabilty and reliability of technical objects. We also accept papers presenting theoretical analyses supported by physical interpretation of causes or ones that have been verified empirically. Eksploatacja i Niezawodność – Maintenance and Reliability also publishes articles on innovative modeling approaches and research methods regarding the durability and reliability of objects.