Ali Fatahi, Mohammad H. Nadimi-Shahraki, Hoda Zamani
{"title":"从医疗数据中选择有效特征子集的改进型二进制量子鸟类导航优化算法:COVID-19 案例研究","authors":"Ali Fatahi, Mohammad H. Nadimi-Shahraki, Hoda Zamani","doi":"10.1007/s42235-023-00433-y","DOIUrl":null,"url":null,"abstract":"<div><p>Feature Subset Selection (FSS) is an NP-hard problem to remove redundant and irrelevant features particularly from medical data, and it can be effectively addressed by metaheuristic algorithms. However, existing binary versions of metaheuristic algorithms have issues with convergence and lack an effective binarization method, resulting in suboptimal solutions that hinder diagnosis and prediction accuracy. This paper aims to propose an Improved Binary Quantum-based Avian Navigation Optimizer Algorithm (IBQANA) for FSS in medical data preprocessing to address the suboptimal solutions arising from binary versions of metaheuristic algorithms. The proposed IBQANA’s contributions include the Hybrid Binary Operator (HBO) and the Distance-based Binary Search Strategy (DBSS). HBO is designed to convert continuous values into binary solutions, even for values outside the [0, 1] range, ensuring accurate binary mapping. On the other hand, DBSS is a two-phase search strategy that enhances the performance of inferior search agents and accelerates convergence. By combining exploration and exploitation phases based on an adaptive probability function, DBSS effectively avoids local optima. The effectiveness of applying HBO is compared with five transfer function families and thresholding on 12 medical datasets, with feature numbers ranging from 8 to 10,509. IBQANA's effectiveness is evaluated regarding the accuracy, fitness, and selected features and compared with seven binary metaheuristic algorithms. Furthermore, IBQANA is utilized to detect COVID-19. The results reveal that the proposed IBQANA outperforms all comparative algorithms on COVID-19 and 11 other medical datasets. The proposed method presents a promising solution to the FSS problem in medical data preprocessing.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 1","pages":"426 - 446"},"PeriodicalIF":4.9000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Binary Quantum-based Avian Navigation Optimizer Algorithm to Select Effective Feature Subset from Medical Data: A COVID-19 Case Study\",\"authors\":\"Ali Fatahi, Mohammad H. Nadimi-Shahraki, Hoda Zamani\",\"doi\":\"10.1007/s42235-023-00433-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Feature Subset Selection (FSS) is an NP-hard problem to remove redundant and irrelevant features particularly from medical data, and it can be effectively addressed by metaheuristic algorithms. However, existing binary versions of metaheuristic algorithms have issues with convergence and lack an effective binarization method, resulting in suboptimal solutions that hinder diagnosis and prediction accuracy. This paper aims to propose an Improved Binary Quantum-based Avian Navigation Optimizer Algorithm (IBQANA) for FSS in medical data preprocessing to address the suboptimal solutions arising from binary versions of metaheuristic algorithms. The proposed IBQANA’s contributions include the Hybrid Binary Operator (HBO) and the Distance-based Binary Search Strategy (DBSS). HBO is designed to convert continuous values into binary solutions, even for values outside the [0, 1] range, ensuring accurate binary mapping. On the other hand, DBSS is a two-phase search strategy that enhances the performance of inferior search agents and accelerates convergence. By combining exploration and exploitation phases based on an adaptive probability function, DBSS effectively avoids local optima. The effectiveness of applying HBO is compared with five transfer function families and thresholding on 12 medical datasets, with feature numbers ranging from 8 to 10,509. IBQANA's effectiveness is evaluated regarding the accuracy, fitness, and selected features and compared with seven binary metaheuristic algorithms. Furthermore, IBQANA is utilized to detect COVID-19. The results reveal that the proposed IBQANA outperforms all comparative algorithms on COVID-19 and 11 other medical datasets. The proposed method presents a promising solution to the FSS problem in medical data preprocessing.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 1\",\"pages\":\"426 - 446\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-023-00433-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-023-00433-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An Improved Binary Quantum-based Avian Navigation Optimizer Algorithm to Select Effective Feature Subset from Medical Data: A COVID-19 Case Study
Feature Subset Selection (FSS) is an NP-hard problem to remove redundant and irrelevant features particularly from medical data, and it can be effectively addressed by metaheuristic algorithms. However, existing binary versions of metaheuristic algorithms have issues with convergence and lack an effective binarization method, resulting in suboptimal solutions that hinder diagnosis and prediction accuracy. This paper aims to propose an Improved Binary Quantum-based Avian Navigation Optimizer Algorithm (IBQANA) for FSS in medical data preprocessing to address the suboptimal solutions arising from binary versions of metaheuristic algorithms. The proposed IBQANA’s contributions include the Hybrid Binary Operator (HBO) and the Distance-based Binary Search Strategy (DBSS). HBO is designed to convert continuous values into binary solutions, even for values outside the [0, 1] range, ensuring accurate binary mapping. On the other hand, DBSS is a two-phase search strategy that enhances the performance of inferior search agents and accelerates convergence. By combining exploration and exploitation phases based on an adaptive probability function, DBSS effectively avoids local optima. The effectiveness of applying HBO is compared with five transfer function families and thresholding on 12 medical datasets, with feature numbers ranging from 8 to 10,509. IBQANA's effectiveness is evaluated regarding the accuracy, fitness, and selected features and compared with seven binary metaheuristic algorithms. Furthermore, IBQANA is utilized to detect COVID-19. The results reveal that the proposed IBQANA outperforms all comparative algorithms on COVID-19 and 11 other medical datasets. The proposed method presents a promising solution to the FSS problem in medical data preprocessing.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.