利用一维离子束系统对 500 毫米长的 X 射线反射镜进行二维精确定位

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Advances in Manufacturing Pub Date : 2023-09-25 DOI:10.1007/s40436-023-00459-9
Qiu-Shi Huang, Han-Dan Huang, Qiao-Yu Wu, Jun Yu, Zhong Zhang, Zhan-Shan Wang
{"title":"利用一维离子束系统对 500 毫米长的 X 射线反射镜进行二维精确定位","authors":"Qiu-Shi Huang,&nbsp;Han-Dan Huang,&nbsp;Qiao-Yu Wu,&nbsp;Jun Yu,&nbsp;Zhong Zhang,&nbsp;Zhan-Shan Wang","doi":"10.1007/s40436-023-00459-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a new method was developed to realize two-dimensional (2D) figure correction of grazing-incidence X-ray mirrors using a one-dimensional (1D) ion-beam figuring system. A mask of holes was specifically designed to generate removal functions at different widths and extend the figuring capability over a wide area. Accordingly, a long mirror could be manufactured. Using this method, the surface height root-mean-square (RMS) error of the center area of 484 mm ×16 mm was reduced from 11.49 nm to 2.01 nm, and the 1D meridional RMS error reached 1.0 nm. The proposed method exhibits high precision and cost effectiveness for production of long X-ray mirrors.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"12 1","pages":"177 - 184"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional precise figuring of 500 mm-long X-ray mirror using one-dimensional ion beam system\",\"authors\":\"Qiu-Shi Huang,&nbsp;Han-Dan Huang,&nbsp;Qiao-Yu Wu,&nbsp;Jun Yu,&nbsp;Zhong Zhang,&nbsp;Zhan-Shan Wang\",\"doi\":\"10.1007/s40436-023-00459-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a new method was developed to realize two-dimensional (2D) figure correction of grazing-incidence X-ray mirrors using a one-dimensional (1D) ion-beam figuring system. A mask of holes was specifically designed to generate removal functions at different widths and extend the figuring capability over a wide area. Accordingly, a long mirror could be manufactured. Using this method, the surface height root-mean-square (RMS) error of the center area of 484 mm ×16 mm was reduced from 11.49 nm to 2.01 nm, and the 1D meridional RMS error reached 1.0 nm. The proposed method exhibits high precision and cost effectiveness for production of long X-ray mirrors.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"12 1\",\"pages\":\"177 - 184\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-023-00459-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-023-00459-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种新方法,利用一维(1D)离子束绘图系统实现掠入射 X 射线反射镜的二维(2D)图形校正。专门设计的孔掩模可产生不同宽度的移除功能,并在大范围内扩展绘图能力。因此,可以制造长镜。利用这种方法,484 mm ×16 mm 中心区域的表面高度均方根误差从 11.49 nm 减小到 2.01 nm,一维经向均方根误差达到 1.0 nm。该方法精度高、成本低,适用于生产长 X 射线反射镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-dimensional precise figuring of 500 mm-long X-ray mirror using one-dimensional ion beam system

In this study, a new method was developed to realize two-dimensional (2D) figure correction of grazing-incidence X-ray mirrors using a one-dimensional (1D) ion-beam figuring system. A mask of holes was specifically designed to generate removal functions at different widths and extend the figuring capability over a wide area. Accordingly, a long mirror could be manufactured. Using this method, the surface height root-mean-square (RMS) error of the center area of 484 mm ×16 mm was reduced from 11.49 nm to 2.01 nm, and the 1D meridional RMS error reached 1.0 nm. The proposed method exhibits high precision and cost effectiveness for production of long X-ray mirrors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
期刊最新文献
Grinding defect characteristics and removal mechanism of unidirectional Cf/SiC composites The effect of the slope angle and the magnetic field on the surface quality of nickel-based superalloys in blasting erosion arc machining Study on the mechanism of burr formation in ultrasonic vibration-assisted honing 9Cr18MoV valve sleeve Flexible modification and texture prediction and control method of internal gearing power honing tooth surface ·AI-enabled intelligent cockpit proactive affective interaction: middle-level feature fusion dual-branch deep learning network for driver emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1