Jiunan Xie, Hua Hu, Peixin Chen, Han Lei, Anmin Hu, Yunwen Wu, Ming Li
{"title":"用于低温固态键合的钴微纳米锥阵列上的电沉积钯涂层","authors":"Jiunan Xie, Hua Hu, Peixin Chen, Han Lei, Anmin Hu, Yunwen Wu, Ming Li","doi":"10.1007/s13391-023-00462-z","DOIUrl":null,"url":null,"abstract":"<div><p>A low-temperature solid-state bonding technology using palladium-coated Co micro-nano cones array (MCA) and Sn-3.0Ag-0.5Cu (wt%) solder was investigated. The Pd modification layer on the surface of Co MCA reduced the growth of oxide film. Low-temperature solid-state bonding was achieved using Co/Pd MCA under the bonding condition of 750 gf, 175 °C and 150 s with the shear strength of 49.55 MPa, and there was no void found along the bonding interface. Microscopic observation revealed that Co/Pd MCA was fully embedded in the soft solder. The average shear strength of the bonding joint was measured and demonstrate that Co/Pd MCA has higher reliability than Co MCA. This work highlights the advantages of bonding based on Co/Pd MCA, which has great potential for extensive practical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"326 - 336"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrodeposited Palladium Coating on Co Micro-Nano Cones Array for Low-Temperature Solid-State Bonding\",\"authors\":\"Jiunan Xie, Hua Hu, Peixin Chen, Han Lei, Anmin Hu, Yunwen Wu, Ming Li\",\"doi\":\"10.1007/s13391-023-00462-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A low-temperature solid-state bonding technology using palladium-coated Co micro-nano cones array (MCA) and Sn-3.0Ag-0.5Cu (wt%) solder was investigated. The Pd modification layer on the surface of Co MCA reduced the growth of oxide film. Low-temperature solid-state bonding was achieved using Co/Pd MCA under the bonding condition of 750 gf, 175 °C and 150 s with the shear strength of 49.55 MPa, and there was no void found along the bonding interface. Microscopic observation revealed that Co/Pd MCA was fully embedded in the soft solder. The average shear strength of the bonding joint was measured and demonstrate that Co/Pd MCA has higher reliability than Co MCA. This work highlights the advantages of bonding based on Co/Pd MCA, which has great potential for extensive practical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 3\",\"pages\":\"326 - 336\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-023-00462-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00462-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrodeposited Palladium Coating on Co Micro-Nano Cones Array for Low-Temperature Solid-State Bonding
A low-temperature solid-state bonding technology using palladium-coated Co micro-nano cones array (MCA) and Sn-3.0Ag-0.5Cu (wt%) solder was investigated. The Pd modification layer on the surface of Co MCA reduced the growth of oxide film. Low-temperature solid-state bonding was achieved using Co/Pd MCA under the bonding condition of 750 gf, 175 °C and 150 s with the shear strength of 49.55 MPa, and there was no void found along the bonding interface. Microscopic observation revealed that Co/Pd MCA was fully embedded in the soft solder. The average shear strength of the bonding joint was measured and demonstrate that Co/Pd MCA has higher reliability than Co MCA. This work highlights the advantages of bonding based on Co/Pd MCA, which has great potential for extensive practical applications.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.