Muhammad Atif, Muhammad Shafiq, Muhammad Farooq, Gohar Ayub, Friedrich Leisch, Muhammad Ilyas
{"title":"监测聚类解决方案的变化:模型和应用综述","authors":"Muhammad Atif, Muhammad Shafiq, Muhammad Farooq, Gohar Ayub, Friedrich Leisch, Muhammad Ilyas","doi":"10.1155/2023/7493623","DOIUrl":null,"url":null,"abstract":"This article comprehensively reviews the applications and algorithms used for monitoring the evolution of clustering solutions in data streams. The clustering technique is an unsupervised learning problem that involves the identification of natural subgroups in a large dataset. In contrast to supervised learning models, clustering is a data mining technique that retrieves the hidden pattern in the input dataset. The clustering solution reflects the mechanism that leads to a high level of similarity between the items. A few applications include pattern recognition, knowledge discovery, and market segmentation. However, many modern-day applications generate streaming or temporal datasets over time, where the pattern is not stationary and may change over time. In the context of this article, change detection is the process of identifying differences in the cluster solutions obtained from streaming datasets at consecutive time points. In this paper, we briefly review the models/algorithms introduced in the literature to monitor clusters’ evolution in data streams. Monitoring the changes in clustering solutions in streaming datasets plays a vital role in policy-making and future prediction. Of course, it has a wide range of applications that cannot be covered in a single study, but some of the most common are highlighted in this article.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Changes in Clustering Solutions: A Review of Models and Applications\",\"authors\":\"Muhammad Atif, Muhammad Shafiq, Muhammad Farooq, Gohar Ayub, Friedrich Leisch, Muhammad Ilyas\",\"doi\":\"10.1155/2023/7493623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article comprehensively reviews the applications and algorithms used for monitoring the evolution of clustering solutions in data streams. The clustering technique is an unsupervised learning problem that involves the identification of natural subgroups in a large dataset. In contrast to supervised learning models, clustering is a data mining technique that retrieves the hidden pattern in the input dataset. The clustering solution reflects the mechanism that leads to a high level of similarity between the items. A few applications include pattern recognition, knowledge discovery, and market segmentation. However, many modern-day applications generate streaming or temporal datasets over time, where the pattern is not stationary and may change over time. In the context of this article, change detection is the process of identifying differences in the cluster solutions obtained from streaming datasets at consecutive time points. In this paper, we briefly review the models/algorithms introduced in the literature to monitor clusters’ evolution in data streams. Monitoring the changes in clustering solutions in streaming datasets plays a vital role in policy-making and future prediction. Of course, it has a wide range of applications that cannot be covered in a single study, but some of the most common are highlighted in this article.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7493623\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7493623","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Monitoring Changes in Clustering Solutions: A Review of Models and Applications
This article comprehensively reviews the applications and algorithms used for monitoring the evolution of clustering solutions in data streams. The clustering technique is an unsupervised learning problem that involves the identification of natural subgroups in a large dataset. In contrast to supervised learning models, clustering is a data mining technique that retrieves the hidden pattern in the input dataset. The clustering solution reflects the mechanism that leads to a high level of similarity between the items. A few applications include pattern recognition, knowledge discovery, and market segmentation. However, many modern-day applications generate streaming or temporal datasets over time, where the pattern is not stationary and may change over time. In the context of this article, change detection is the process of identifying differences in the cluster solutions obtained from streaming datasets at consecutive time points. In this paper, we briefly review the models/algorithms introduced in the literature to monitor clusters’ evolution in data streams. Monitoring the changes in clustering solutions in streaming datasets plays a vital role in policy-making and future prediction. Of course, it has a wide range of applications that cannot be covered in a single study, but some of the most common are highlighted in this article.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.