基于Mel谱图的多通道模型肺音异常分类

IF 0.5 Q4 ENGINEERING, BIOMEDICAL Journal of Biomimetics, Biomaterials and Biomedical Engineering Pub Date : 2023-11-03 DOI:10.4028/p-21pucq
Pham Thi Viet Huong, Le Duc Thinh, Phung Van Kien, Tran Anh Vu
{"title":"基于Mel谱图的多通道模型肺音异常分类","authors":"Pham Thi Viet Huong, Le Duc Thinh, Phung Van Kien, Tran Anh Vu","doi":"10.4028/p-21pucq","DOIUrl":null,"url":null,"abstract":"Lung sound analysis plays an important role in the assessment and diagnosis of respiratory conditions and diseases. It can provide valuable information about the functioning of the respiratory system, including the airways, lungs, and associated structures. By analyzing the characteristics of lung sounds, healthcare professionals can gain insights into the presence of abnormalities, such as airway obstructions, lung diseases, and respiratory infections. In this paper, a multiple channel model for processing and classifying abnormalities in lung sound is proposed, which utilize the characteristics of Mel spectrogram and the Empirical Mode Decomposition (EMD). Unlike previous research which directly convert the lung sound into scalogram or spectrogram, the pre-processing of the original audio signal is considered and focused in this paper. This pre-processing step includes denoising, resampling, padding and augmentation, which incredibly increase the quality of the input signal. Finally, the multiple channel is put into the VGG16 deep learning model to classify the abnormalities in lung sound, including wheezes, crackles, and both. The model is trained and tested on the benchmark ICBHI dataset. The proposed model has shown better performance when compared with the state-of-the-art researches.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Channels Model Based on Mel Spectrogram for Classifying Abnormalities in Lung Sound\",\"authors\":\"Pham Thi Viet Huong, Le Duc Thinh, Phung Van Kien, Tran Anh Vu\",\"doi\":\"10.4028/p-21pucq\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung sound analysis plays an important role in the assessment and diagnosis of respiratory conditions and diseases. It can provide valuable information about the functioning of the respiratory system, including the airways, lungs, and associated structures. By analyzing the characteristics of lung sounds, healthcare professionals can gain insights into the presence of abnormalities, such as airway obstructions, lung diseases, and respiratory infections. In this paper, a multiple channel model for processing and classifying abnormalities in lung sound is proposed, which utilize the characteristics of Mel spectrogram and the Empirical Mode Decomposition (EMD). Unlike previous research which directly convert the lung sound into scalogram or spectrogram, the pre-processing of the original audio signal is considered and focused in this paper. This pre-processing step includes denoising, resampling, padding and augmentation, which incredibly increase the quality of the input signal. Finally, the multiple channel is put into the VGG16 deep learning model to classify the abnormalities in lung sound, including wheezes, crackles, and both. The model is trained and tested on the benchmark ICBHI dataset. The proposed model has shown better performance when compared with the state-of-the-art researches.\",\"PeriodicalId\":15161,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-21pucq\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-21pucq","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

肺音分析在呼吸系统疾病的评估和诊断中起着重要作用。它可以提供有关呼吸系统功能的有价值的信息,包括气道、肺和相关结构。通过分析肺音的特征,医疗保健专业人员可以深入了解异常的存在,例如气道阻塞、肺部疾病和呼吸道感染。本文利用Mel谱图和经验模态分解(EMD)的特点,提出了一种多通道肺音异常处理与分类模型。不同于以往的研究直接将肺声转换为尺度图或频谱图,本文重点考虑了对原始音频信号的预处理。这个预处理步骤包括去噪,重采样,填充和增强,这令人难以置信地提高了输入信号的质量。最后,将多通道输入到VGG16深度学习模型中,对肺音中的异常进行分类,包括喘息声、噼啪声和两者兼有。在ICBHI基准数据集上对模型进行了训练和测试。与目前的研究结果相比,该模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Channels Model Based on Mel Spectrogram for Classifying Abnormalities in Lung Sound
Lung sound analysis plays an important role in the assessment and diagnosis of respiratory conditions and diseases. It can provide valuable information about the functioning of the respiratory system, including the airways, lungs, and associated structures. By analyzing the characteristics of lung sounds, healthcare professionals can gain insights into the presence of abnormalities, such as airway obstructions, lung diseases, and respiratory infections. In this paper, a multiple channel model for processing and classifying abnormalities in lung sound is proposed, which utilize the characteristics of Mel spectrogram and the Empirical Mode Decomposition (EMD). Unlike previous research which directly convert the lung sound into scalogram or spectrogram, the pre-processing of the original audio signal is considered and focused in this paper. This pre-processing step includes denoising, resampling, padding and augmentation, which incredibly increase the quality of the input signal. Finally, the multiple channel is put into the VGG16 deep learning model to classify the abnormalities in lung sound, including wheezes, crackles, and both. The model is trained and tested on the benchmark ICBHI dataset. The proposed model has shown better performance when compared with the state-of-the-art researches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
期刊最新文献
Preparation and Characterization of PMMA/SrBHA Composites for Bone Replacement Applications Journal of Biomimetics, Biomaterials and Biomedical Engineering Vol. 65 Characterization of Polycaprolactone/Eucomis autumnalis Cellulose Composite: Structural, Thermal, and Mechanical Analysis Bio-Convective Flow of Micropolar Nanofluids over an Inclined Permeable Stretching Surface with Radiative Activation Energy Improving Chitosan/PVA Electrospun Nanofibers Antimicrobial Efficacy with Methylene Blue for Effective E. Coli Inhibition Using Photodynamic Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1