一类带动态间隙分段约束系统的非线性振动特性及分岔控制

IF 0.6 4区 工程技术 Q4 MECHANICS Mechanika Pub Date : 2023-10-18 DOI:10.5755/j02.mech.33389
Fei LIU, Shuhui XU, Zhuo TANG, Qingzhen MA
{"title":"一类带动态间隙分段约束系统的非线性振动特性及分岔控制","authors":"Fei LIU, Shuhui XU, Zhuo TANG, Qingzhen MA","doi":"10.5755/j02.mech.33389","DOIUrl":null,"url":null,"abstract":"Considering the mass block system under Piecewise nonlinear constraint, the vibration dynamic model of the system is established according to the generalized dissipative Lagrange principle, and the average method is used to solve the amplitude-frequency response of the vibration system. The influence of system parameters on vibration characteristics is analyzed with amplitude-frequency characteristics, phase plane characteristics, frequency characteristics, bifurcation characteristics ,and so on. The results show that: 1) the reverse of the rate of change of Piecewise nonlinear elastic force will destroy the stability of the system and obtain the relationship of the constraint parameters that need to be satisfied when the system is stable at the piecewise critical point. 2) With the increase in the number of nonlinear constraints, the vibration displacement of the system tends to be chaotic, and the frequency composition becomes more complex and variable, prone to resonance behavior. 3) As the static gap decreases and the dynamic gap amplitude and frequency increase, the unstable frequency range of the system will increase, and the vibration behavior will become chaotic and difficult to predict. 4) The design of a differential sliding mode controller can effectively control the bifurcation behavior of the system.","PeriodicalId":54741,"journal":{"name":"Mechanika","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear vibration characteristics and bifurcation control of a class of piecewise constrained systems with dynamic clearances\",\"authors\":\"Fei LIU, Shuhui XU, Zhuo TANG, Qingzhen MA\",\"doi\":\"10.5755/j02.mech.33389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the mass block system under Piecewise nonlinear constraint, the vibration dynamic model of the system is established according to the generalized dissipative Lagrange principle, and the average method is used to solve the amplitude-frequency response of the vibration system. The influence of system parameters on vibration characteristics is analyzed with amplitude-frequency characteristics, phase plane characteristics, frequency characteristics, bifurcation characteristics ,and so on. The results show that: 1) the reverse of the rate of change of Piecewise nonlinear elastic force will destroy the stability of the system and obtain the relationship of the constraint parameters that need to be satisfied when the system is stable at the piecewise critical point. 2) With the increase in the number of nonlinear constraints, the vibration displacement of the system tends to be chaotic, and the frequency composition becomes more complex and variable, prone to resonance behavior. 3) As the static gap decreases and the dynamic gap amplitude and frequency increase, the unstable frequency range of the system will increase, and the vibration behavior will become chaotic and difficult to predict. 4) The design of a differential sliding mode controller can effectively control the bifurcation behavior of the system.\",\"PeriodicalId\":54741,\"journal\":{\"name\":\"Mechanika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.mech.33389\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.mech.33389","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑分段非线性约束下的质量块系统,根据广义耗散拉格朗日原理建立了系统的振动动力学模型,并采用平均法求解了振动系统的幅频响应。从幅频特性、相平面特性、频率特性、分岔特性等方面分析了系统参数对振动特性的影响。结果表明:1)分段非线性弹性力变化率的反转会破坏系统的稳定性,得到系统在分段临界点稳定时需要满足的约束参数关系。2)随着非线性约束数量的增加,系统的振动位移趋于混沌,频率组成变得更加复杂多变,容易出现共振行为。3)随着静间隙减小,动间隙幅值和频率增大,系统的不稳定频率范围增大,振动行为变得混沌且难以预测。4)微分滑模控制器的设计可以有效地控制系统的分岔行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear vibration characteristics and bifurcation control of a class of piecewise constrained systems with dynamic clearances
Considering the mass block system under Piecewise nonlinear constraint, the vibration dynamic model of the system is established according to the generalized dissipative Lagrange principle, and the average method is used to solve the amplitude-frequency response of the vibration system. The influence of system parameters on vibration characteristics is analyzed with amplitude-frequency characteristics, phase plane characteristics, frequency characteristics, bifurcation characteristics ,and so on. The results show that: 1) the reverse of the rate of change of Piecewise nonlinear elastic force will destroy the stability of the system and obtain the relationship of the constraint parameters that need to be satisfied when the system is stable at the piecewise critical point. 2) With the increase in the number of nonlinear constraints, the vibration displacement of the system tends to be chaotic, and the frequency composition becomes more complex and variable, prone to resonance behavior. 3) As the static gap decreases and the dynamic gap amplitude and frequency increase, the unstable frequency range of the system will increase, and the vibration behavior will become chaotic and difficult to predict. 4) The design of a differential sliding mode controller can effectively control the bifurcation behavior of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanika
Mechanika 物理-力学
CiteScore
1.30
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is publishing scientific papers dealing with the following problems: Mechanics of Solid Bodies; Mechanics of Fluids and Gases; Dynamics of Mechanical Systems; Design and Optimization of Mechanical Systems; Mechanical Technologies.
期刊最新文献
Nonlinear vibration characteristics and bifurcation control of a class of piecewise constrained systems with dynamic clearances Model Updating Based on Bayesian Theory and Improved Objective Function Design and FEM Analysis of Plastic Parts of a Tie-Rod Composite Hydraulic Cylinder Real-Time Energy Consumption Sensing System in SMT Intelligent Workshop Research on Bionic Hierarchical Optimization of Wing Based on PLSR and PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1