电动汽车锂离子电池冷却技术的数值模拟

Amany Belal, Ali I. Shehata, Yehia A. Eldrainy, Essam H. Seddik
{"title":"电动汽车锂离子电池冷却技术的数值模拟","authors":"Amany Belal, Ali I. Shehata, Yehia A. Eldrainy, Essam H. Seddik","doi":"10.46328/ijonest.186","DOIUrl":null,"url":null,"abstract":"Various strategies were developed for battery cooling including air cooling, liquid cooling, fin cooling, phase change material cooling (PCM), and heat pipes. The objective of this study was to identify an appropriate cooling technique for lithium-ion batteries utilized in electric vehicles. A three-dimensional unsteady numerical model was developed using ANSYS software to conduct simulations to assess the cooling efficiency of each approach. The numerical results indicate that the air-cooling technique yielded a peak temperature of 32.928 °C and a maximum total heat flow of 11456 W/m2. The fin cooling technique had a peak total heat flow of 0.014476 W/m2 and reached a maximum temperature of 35.17 °C. The liquid cooling technique exhibited a peak temperature of 31.773 °C and a maximum total heat flux of 10642 W/m2. Additionally, a changed battery pack was planned with extra air outlets to upgrade the convection cycle of the air-cooling technique. Based on the numerical findings, the modified battery pack for air-cooling technique resulted in a peak temperature of 31.214 °C and a maximum total heat flow of 12272 W/m2. PCM and heat pipe method had a maximum temperature of 54.85 °C and a maximum total heat flow of 554.69 W/m2. According to the results obtained, the liquid cooling method demonstrated the lowest maximum temperature. The simulations indicate that this approach offers the most effective thermal management, with a maximum temperature value of 31.773 °C.","PeriodicalId":14471,"journal":{"name":"International Journal on Advanced Science, Engineering and Information Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Lithium-ion Battery Cooling Techniques for Electric Vehicles\",\"authors\":\"Amany Belal, Ali I. Shehata, Yehia A. Eldrainy, Essam H. Seddik\",\"doi\":\"10.46328/ijonest.186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various strategies were developed for battery cooling including air cooling, liquid cooling, fin cooling, phase change material cooling (PCM), and heat pipes. The objective of this study was to identify an appropriate cooling technique for lithium-ion batteries utilized in electric vehicles. A three-dimensional unsteady numerical model was developed using ANSYS software to conduct simulations to assess the cooling efficiency of each approach. The numerical results indicate that the air-cooling technique yielded a peak temperature of 32.928 °C and a maximum total heat flow of 11456 W/m2. The fin cooling technique had a peak total heat flow of 0.014476 W/m2 and reached a maximum temperature of 35.17 °C. The liquid cooling technique exhibited a peak temperature of 31.773 °C and a maximum total heat flux of 10642 W/m2. Additionally, a changed battery pack was planned with extra air outlets to upgrade the convection cycle of the air-cooling technique. Based on the numerical findings, the modified battery pack for air-cooling technique resulted in a peak temperature of 31.214 °C and a maximum total heat flow of 12272 W/m2. PCM and heat pipe method had a maximum temperature of 54.85 °C and a maximum total heat flow of 554.69 W/m2. According to the results obtained, the liquid cooling method demonstrated the lowest maximum temperature. The simulations indicate that this approach offers the most effective thermal management, with a maximum temperature value of 31.773 °C.\",\"PeriodicalId\":14471,\"journal\":{\"name\":\"International Journal on Advanced Science, Engineering and Information Technology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Advanced Science, Engineering and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46328/ijonest.186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Advanced Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46328/ijonest.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

电池的冷却策略包括空气冷却、液体冷却、翅片冷却、相变材料冷却(PCM)和热管冷却等。本研究的目的是为电动汽车中使用的锂离子电池确定一种合适的冷却技术。利用ANSYS软件建立三维非定常数值模型进行仿真,评估各方法的冷却效率。数值计算结果表明,风冷技术的峰值温度为32.928℃,最大总热流为11456 W/m2。翅片冷却技术的最大总热流为0.014476 W/m2,最高温度为35.17℃。液体冷却技术的峰值温度为31.773℃,最大总热流密度为10642 W/m2。此外,一个改变的电池组计划有额外的空气出口,以升级空气冷却技术的对流循环。数值计算结果表明,采用风冷技术的改进电池组的峰值温度为31.214℃,最大总热流为12272 W/m2。PCM和热管法的最高温度为54.85℃,最大总热流为554.69 W/m2。根据所得结果,液体冷却方法具有最低的最高温度。仿真结果表明,该方法可提供最有效的热管理,最高温度值为31.773℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation of Lithium-ion Battery Cooling Techniques for Electric Vehicles
Various strategies were developed for battery cooling including air cooling, liquid cooling, fin cooling, phase change material cooling (PCM), and heat pipes. The objective of this study was to identify an appropriate cooling technique for lithium-ion batteries utilized in electric vehicles. A three-dimensional unsteady numerical model was developed using ANSYS software to conduct simulations to assess the cooling efficiency of each approach. The numerical results indicate that the air-cooling technique yielded a peak temperature of 32.928 °C and a maximum total heat flow of 11456 W/m2. The fin cooling technique had a peak total heat flow of 0.014476 W/m2 and reached a maximum temperature of 35.17 °C. The liquid cooling technique exhibited a peak temperature of 31.773 °C and a maximum total heat flux of 10642 W/m2. Additionally, a changed battery pack was planned with extra air outlets to upgrade the convection cycle of the air-cooling technique. Based on the numerical findings, the modified battery pack for air-cooling technique resulted in a peak temperature of 31.214 °C and a maximum total heat flow of 12272 W/m2. PCM and heat pipe method had a maximum temperature of 54.85 °C and a maximum total heat flow of 554.69 W/m2. According to the results obtained, the liquid cooling method demonstrated the lowest maximum temperature. The simulations indicate that this approach offers the most effective thermal management, with a maximum temperature value of 31.773 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal on Advanced Science, Engineering and Information Technology
International Journal on Advanced Science, Engineering and Information Technology Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.40
自引率
0.00%
发文量
272
期刊介绍: International Journal on Advanced Science, Engineering and Information Technology (IJASEIT) is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of science, engineering and information technology. The journal publishes state-of-art papers in fundamental theory, experiments and simulation, as well as applications, with a systematic proposed method, sufficient review on previous works, expanded discussion and concise conclusion. As our commitment to the advancement of science and technology, the IJASEIT follows the open access policy that allows the published articles freely available online without any subscription. The journal scopes include (but not limited to) the followings: -Science: Bioscience & Biotechnology. Chemistry & Food Technology, Environmental, Health Science, Mathematics & Statistics, Applied Physics -Engineering: Architecture, Chemical & Process, Civil & structural, Electrical, Electronic & Systems, Geological & Mining Engineering, Mechanical & Materials -Information Science & Technology: Artificial Intelligence, Computer Science, E-Learning & Multimedia, Information System, Internet & Mobile Computing
期刊最新文献
Medical Record Document Search with TF-IDF and Vector Space Model (VSM) Aesthetic Plastic Surgery Issues During the COVID-19 Period Using Topic Modeling Revolutionizing Echocardiography: A Comparative Study of Advanced AI Models for Precise Left Ventricular Segmentation The Mixed MEWMA and MCUSUM Control Chart Design of Efficiency Series Data of Production Quality Process Monitoring A Comprehensive Review of Machine Learning Approaches for Detecting Malicious Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1