澳大利亚海洋哺乳动物、鸟类和海龟体内无机污染物的研究进展

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-09-12 DOI:10.1071/en23057
Chad V. Jarolimek, Josh J. King, Simon C. Apte, Jane Hall, Anil Gautam, Megan Gillmore, Christopher Doyle
{"title":"澳大利亚海洋哺乳动物、鸟类和海龟体内无机污染物的研究进展","authors":"Chad V. Jarolimek, Josh J. King, Simon C. Apte, Jane Hall, Anil Gautam, Megan Gillmore, Christopher Doyle","doi":"10.1071/en23057","DOIUrl":null,"url":null,"abstract":"Environmental context Metal concentrations can build up to potentially harmful levels in marine mammals as they are at the top of the food chain. This review summarises the information available on metal concentrations in marine mammals, birds and turtles from around Australia. Despite large data gaps, the available data suggest that metal concentrations are similar to those encountered in other regions of the world. Abstract A comprehensive compilation of the published data for trace element concentrations (metals and metalloids) in Australian marine mammals, birds and turtles is presented. The majority of studies have relied on the utilisation of opportunistically collected samples, animal strandings and bycatch. This has resulted in large gaps in geographical, temporal and species coverage data. For instance, little or no data are available for cetaceans in New South Wales or the Northern Territory, and out of 14 endemic species of dolphins, data only exist for seven species. The aforementioned data gaps make it hard to identify statistically significant trends, a problem compounded by data being reported in the form of ranges without raw data. Trace element concentrations measured in various marine species and their tissue types are extremely variable, with ranges typically spanning several orders of magnitude, but are generally comparable with international data. Trends in contaminant concentrations with tissue type follow generally accepted patterns of behaviour for higher organisms, with the highest mercury concentrations in liver and cadmium in kidney tissues. Herbivores have lower contaminant loadings than carnivores, reflecting the importance of diet, and there are identifiable age-related trends for elements such as mercury. The lack of supporting pathology on dead and stranded animals and data on specimens from uncontaminated locations restrict conclusions on organism health impacts. There have been some attempts to use non-invasive sampling of indicator tissues such as fur, bristle and feathers. However, it is currently difficult to extrapolate these data to estimate contaminant concentrations in major organs. Recommendations for future investigations are made.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of inorganic contaminants in Australian marine mammals, birds and turtles\",\"authors\":\"Chad V. Jarolimek, Josh J. King, Simon C. Apte, Jane Hall, Anil Gautam, Megan Gillmore, Christopher Doyle\",\"doi\":\"10.1071/en23057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental context Metal concentrations can build up to potentially harmful levels in marine mammals as they are at the top of the food chain. This review summarises the information available on metal concentrations in marine mammals, birds and turtles from around Australia. Despite large data gaps, the available data suggest that metal concentrations are similar to those encountered in other regions of the world. Abstract A comprehensive compilation of the published data for trace element concentrations (metals and metalloids) in Australian marine mammals, birds and turtles is presented. The majority of studies have relied on the utilisation of opportunistically collected samples, animal strandings and bycatch. This has resulted in large gaps in geographical, temporal and species coverage data. For instance, little or no data are available for cetaceans in New South Wales or the Northern Territory, and out of 14 endemic species of dolphins, data only exist for seven species. The aforementioned data gaps make it hard to identify statistically significant trends, a problem compounded by data being reported in the form of ranges without raw data. Trace element concentrations measured in various marine species and their tissue types are extremely variable, with ranges typically spanning several orders of magnitude, but are generally comparable with international data. Trends in contaminant concentrations with tissue type follow generally accepted patterns of behaviour for higher organisms, with the highest mercury concentrations in liver and cadmium in kidney tissues. Herbivores have lower contaminant loadings than carnivores, reflecting the importance of diet, and there are identifiable age-related trends for elements such as mercury. The lack of supporting pathology on dead and stranded animals and data on specimens from uncontaminated locations restrict conclusions on organism health impacts. There have been some attempts to use non-invasive sampling of indicator tissues such as fur, bristle and feathers. However, it is currently difficult to extrapolate these data to estimate contaminant concentrations in major organs. Recommendations for future investigations are made.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/en23057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/en23057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

海洋哺乳动物处于食物链的顶端,其体内的金属浓度可能累积到潜在的有害水平。本文综述了有关澳大利亚海洋哺乳动物、鸟类和海龟体内金属浓度的现有信息。尽管存在很大的数据缺口,但现有的数据表明,金属浓度与世界其他区域类似。摘要对澳大利亚海洋哺乳动物、鸟类和海龟体内痕量元素(金属和类金属)浓度的已发表数据进行了综合整理。大多数研究都依赖于利用偶然收集的样本、搁浅的动物和副渔获物。这造成了地理、时间和物种覆盖数据方面的巨大差距。例如,新南威尔士州或北领地的鲸类动物数据很少或根本没有,在14种特有的海豚物种中,只有7种的数据存在。上述数据差距使得很难确定统计上显著的趋势,而没有原始数据的数据以范围的形式报告,使问题更加复杂。在各种海洋物种及其组织类型中测量的微量元素浓度变化很大,其范围通常跨越几个数量级,但通常可与国际数据相比较。污染物浓度随组织类型的变化趋势遵循普遍接受的高等生物体的行为模式,肝脏中的汞浓度最高,肾脏组织中的镉浓度最高。草食动物的污染物负荷比食肉动物要低,这反映了饮食的重要性,而且汞等元素也有明显的与年龄相关的趋势。由于缺乏对死亡和滞留动物的病理学证明以及来自未受污染地点的标本的数据,限制了对生物体健康影响的结论。已经有一些尝试使用非侵入性采样的指示组织,如皮毛,鬃毛和羽毛。然而,目前很难推断这些数据来估计主要器官的污染物浓度。对今后的调查提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of inorganic contaminants in Australian marine mammals, birds and turtles
Environmental context Metal concentrations can build up to potentially harmful levels in marine mammals as they are at the top of the food chain. This review summarises the information available on metal concentrations in marine mammals, birds and turtles from around Australia. Despite large data gaps, the available data suggest that metal concentrations are similar to those encountered in other regions of the world. Abstract A comprehensive compilation of the published data for trace element concentrations (metals and metalloids) in Australian marine mammals, birds and turtles is presented. The majority of studies have relied on the utilisation of opportunistically collected samples, animal strandings and bycatch. This has resulted in large gaps in geographical, temporal and species coverage data. For instance, little or no data are available for cetaceans in New South Wales or the Northern Territory, and out of 14 endemic species of dolphins, data only exist for seven species. The aforementioned data gaps make it hard to identify statistically significant trends, a problem compounded by data being reported in the form of ranges without raw data. Trace element concentrations measured in various marine species and their tissue types are extremely variable, with ranges typically spanning several orders of magnitude, but are generally comparable with international data. Trends in contaminant concentrations with tissue type follow generally accepted patterns of behaviour for higher organisms, with the highest mercury concentrations in liver and cadmium in kidney tissues. Herbivores have lower contaminant loadings than carnivores, reflecting the importance of diet, and there are identifiable age-related trends for elements such as mercury. The lack of supporting pathology on dead and stranded animals and data on specimens from uncontaminated locations restrict conclusions on organism health impacts. There have been some attempts to use non-invasive sampling of indicator tissues such as fur, bristle and feathers. However, it is currently difficult to extrapolate these data to estimate contaminant concentrations in major organs. Recommendations for future investigations are made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1