响应面法优化松茸提取物/分散片工艺

Jirapornchai Suksaeree, Chaowalit Monton, Abhiruj Navabhatra, Laksana Charoenchai, Natawat Chankana, Ornchuma Naksuriya
{"title":"响应面法优化松茸提取物/分散片工艺","authors":"Jirapornchai Suksaeree, Chaowalit Monton, Abhiruj Navabhatra, Laksana Charoenchai, Natawat Chankana, Ornchuma Naksuriya","doi":"10.14416/j.asep.2023.09.003","DOIUrl":null,"url":null,"abstract":"The original dosage form of the Semha-Pinas herbal formula, an expectorant in Thai traditional medicine, is in a pill form. However, it is inconvenient to use because it must be powdered and dissolved in hot water or juice of Citrus x aurantium L. before use. The development of a new dosage form presents a challenging prospect. This work aimed to develop Semha-Pinas extract orodispersible tablets based on the response surface methodology using the Box-Behnken design. Firstly, Semha-Pinas extract was tested for its safety in HepG2 cells. The safe extract was further developed as orodispersible tablets. Four levels of three factors — compressional force (500–2,000 psi), the quantity of microcrystalline cellulose (0–15%), and the quantity of croscarmellose sodium and sodium starch glycolate (0:8–6:2%) — were screened using the one factor at a time technique. The Box-Behnken design has three levels for each factor: 1,000–2,000 psi, 5–15%, and 2:6–6:2%, respectively. Tablet thickness, hardness, friability, and disintegration time were the four responses that were monitored. The results indicated the safety of the Semha-Pinas extract, even at a concentration of 5 mg/mL. The optimal orodispersible tablet formulation had a compressional force of 1,500 psi, microcrystalline cellulose of 10%, and croscarmellose sodium to sodium starch glycolate of 4:4%. In summary, this study successfully fabricated Semha-Pinas extract orodispersible tablets using response surface methodology, achieving the desired property of fast disintegration. Moreover, these findings can serve as a valuable reference for pilot scale and industrial scale production.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Semha-Pinas Extract Orodispersible Tablets Using Response Surface Methodology\",\"authors\":\"Jirapornchai Suksaeree, Chaowalit Monton, Abhiruj Navabhatra, Laksana Charoenchai, Natawat Chankana, Ornchuma Naksuriya\",\"doi\":\"10.14416/j.asep.2023.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The original dosage form of the Semha-Pinas herbal formula, an expectorant in Thai traditional medicine, is in a pill form. However, it is inconvenient to use because it must be powdered and dissolved in hot water or juice of Citrus x aurantium L. before use. The development of a new dosage form presents a challenging prospect. This work aimed to develop Semha-Pinas extract orodispersible tablets based on the response surface methodology using the Box-Behnken design. Firstly, Semha-Pinas extract was tested for its safety in HepG2 cells. The safe extract was further developed as orodispersible tablets. Four levels of three factors — compressional force (500–2,000 psi), the quantity of microcrystalline cellulose (0–15%), and the quantity of croscarmellose sodium and sodium starch glycolate (0:8–6:2%) — were screened using the one factor at a time technique. The Box-Behnken design has three levels for each factor: 1,000–2,000 psi, 5–15%, and 2:6–6:2%, respectively. Tablet thickness, hardness, friability, and disintegration time were the four responses that were monitored. The results indicated the safety of the Semha-Pinas extract, even at a concentration of 5 mg/mL. The optimal orodispersible tablet formulation had a compressional force of 1,500 psi, microcrystalline cellulose of 10%, and croscarmellose sodium to sodium starch glycolate of 4:4%. In summary, this study successfully fabricated Semha-Pinas extract orodispersible tablets using response surface methodology, achieving the desired property of fast disintegration. Moreover, these findings can serve as a valuable reference for pilot scale and industrial scale production.\",\"PeriodicalId\":8097,\"journal\":{\"name\":\"Applied Science and Engineering Progress\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Engineering Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/j.asep.2023.09.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2023.09.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

Semha-Pinas草药配方的原始剂型是丸剂,是泰国传统医学中的一种祛痰药。但使用前必须将其磨成粉末,用热水或柑桔汁溶解,使用不方便。新剂型的开发具有挑战性。本研究旨在采用Box-Behnken设计,基于响应面法开发三叶草提取物或分散片。首先,对番石榴提取物在HepG2细胞中的安全性进行了测试。将安全提取液进一步开发成非分散片剂。四个水平的三个因素-压缩力(500-2,000 psi),微晶纤维素的数量(0-15%),以及交联纤维素钠和淀粉乙醇酸钠的数量(0:8-6:2%)-使用一次一因素技术筛选。Box-Behnken设计的每个因素有三个级别:分别为1,000-2,000 psi、5-15%和2:6-6:2%。监测片剂的厚度、硬度、脆性和崩解时间。结果表明,即使在浓度为5 mg/mL时,番麻提取物也是安全的。最佳的孔分散片配方为压缩力为1500 psi,微晶纤维素含量为10%,交联纤维素钠与乙醇酸淀粉钠的比例为4:4%。综上所述,本研究成功地利用响应面法制备了松木提取物或分散片,达到了快速崩解的要求。研究结果可为中试和工业规模生产提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Semha-Pinas Extract Orodispersible Tablets Using Response Surface Methodology
The original dosage form of the Semha-Pinas herbal formula, an expectorant in Thai traditional medicine, is in a pill form. However, it is inconvenient to use because it must be powdered and dissolved in hot water or juice of Citrus x aurantium L. before use. The development of a new dosage form presents a challenging prospect. This work aimed to develop Semha-Pinas extract orodispersible tablets based on the response surface methodology using the Box-Behnken design. Firstly, Semha-Pinas extract was tested for its safety in HepG2 cells. The safe extract was further developed as orodispersible tablets. Four levels of three factors — compressional force (500–2,000 psi), the quantity of microcrystalline cellulose (0–15%), and the quantity of croscarmellose sodium and sodium starch glycolate (0:8–6:2%) — were screened using the one factor at a time technique. The Box-Behnken design has three levels for each factor: 1,000–2,000 psi, 5–15%, and 2:6–6:2%, respectively. Tablet thickness, hardness, friability, and disintegration time were the four responses that were monitored. The results indicated the safety of the Semha-Pinas extract, even at a concentration of 5 mg/mL. The optimal orodispersible tablet formulation had a compressional force of 1,500 psi, microcrystalline cellulose of 10%, and croscarmellose sodium to sodium starch glycolate of 4:4%. In summary, this study successfully fabricated Semha-Pinas extract orodispersible tablets using response surface methodology, achieving the desired property of fast disintegration. Moreover, these findings can serve as a valuable reference for pilot scale and industrial scale production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Science and Engineering Progress
Applied Science and Engineering Progress Engineering-Engineering (all)
CiteScore
4.70
自引率
0.00%
发文量
56
期刊最新文献
Nanostructured Composites: Modelling for Tailored Industrial Application Facile Synthesis of Hybrid-Polyoxometalates Nanocomposite for Degradation of Cationic and Anionic Dyes in Water Treatment Characterization of Polyvinylpyrrolidone-2-Acrylamide-2-Methlypropansulphonic Acid Based Polymer as a Corrosion Inhibitor for Copper and Brass in Hydrochloric Acid Conditional Optimization on the Photocatalytic Degradation Removal Efficiency of Formaldehyde using TiO2 – Nylon 6 Electrospun Composite Membrane Multicomponent Equilibrium Isotherms and Kinetics Study of Heavy Metals Removal from Aqueous Solutions Using Electrocoagulation Combined with Mordenite Zeolite and Ultrasonication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1