{"title":"汽车用机械燃油喷射系统在定容喷雾室中二甲醚的宏观和微观喷射特性","authors":"Avinash Kumar Agarwal, Vikram Kumar, Shanti Mehra, Nalini Kanta Mukherjee, Hardikk Valera, Devendra Nene","doi":"10.1115/1.4063202","DOIUrl":null,"url":null,"abstract":"Abstract Spray investigations are critical for understanding internal combustion engine combustion. Optimised spray atomisation helps improve engine output/performance and reduce tailpipe emissions. The spray from the injector nozzle depends on nozzle hole diameter, fuel injection pressure, ambient density, pressure and temperature in the spray chamber, and test fuel properties. This study evaluated macroscopic and microscopic spray characteristics of dimethyl ether (DME) and baseline diesel under atmospheric conditions (1.013 bar pressure at 298 K temperature). It correlated the spray parameters with distinctive physicochemical properties of diesel and DME using dimensionless numbers, namely Reynolds number, Weber number, and Ohnesorge number. The fuel injection system consisted of a high-pressure mechanical injection pump and mechanical fuel injectors having an original equipment manufacturer fixed nozzle opening pressure in the constant volume spray chamber. The microscopic spray investigations were performed using a phase Doppler interferometer along the spray direction at three axial distances (50, 70, and 90 mm) from the nozzle. The three orthogonal spray droplet velocities of diesel and DME were compared. The droplet number-size distributions for baseline diesel and DME were compared. Macroscopic spray characteristics were evaluated using high-speed imaging. Reynolds number was higher for DME, leading to more turbulence in the spray and accelerating the spray breakup phenomenon. Weber number of DME was also much higher than baseline diesel due to its lower surface tension. The higher Weber and lower Ohnesorge numbers justified the finer droplets of DME sprays. DME showed superior spray atomization characteristics than baseline diesel, leading to superior fuel–air mixing and efficient and sootless combustion.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Macroscopic and Microscopic Spray Characteristics of Dimethyl Ether in a Constant Volume Spray Chamber Using a Mechanical Fuel Injection System for Automotive Applications\",\"authors\":\"Avinash Kumar Agarwal, Vikram Kumar, Shanti Mehra, Nalini Kanta Mukherjee, Hardikk Valera, Devendra Nene\",\"doi\":\"10.1115/1.4063202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Spray investigations are critical for understanding internal combustion engine combustion. Optimised spray atomisation helps improve engine output/performance and reduce tailpipe emissions. The spray from the injector nozzle depends on nozzle hole diameter, fuel injection pressure, ambient density, pressure and temperature in the spray chamber, and test fuel properties. This study evaluated macroscopic and microscopic spray characteristics of dimethyl ether (DME) and baseline diesel under atmospheric conditions (1.013 bar pressure at 298 K temperature). It correlated the spray parameters with distinctive physicochemical properties of diesel and DME using dimensionless numbers, namely Reynolds number, Weber number, and Ohnesorge number. The fuel injection system consisted of a high-pressure mechanical injection pump and mechanical fuel injectors having an original equipment manufacturer fixed nozzle opening pressure in the constant volume spray chamber. The microscopic spray investigations were performed using a phase Doppler interferometer along the spray direction at three axial distances (50, 70, and 90 mm) from the nozzle. The three orthogonal spray droplet velocities of diesel and DME were compared. The droplet number-size distributions for baseline diesel and DME were compared. Macroscopic spray characteristics were evaluated using high-speed imaging. Reynolds number was higher for DME, leading to more turbulence in the spray and accelerating the spray breakup phenomenon. Weber number of DME was also much higher than baseline diesel due to its lower surface tension. The higher Weber and lower Ohnesorge numbers justified the finer droplets of DME sprays. DME showed superior spray atomization characteristics than baseline diesel, leading to superior fuel–air mixing and efficient and sootless combustion.\",\"PeriodicalId\":8652,\"journal\":{\"name\":\"ASME Open Journal of Engineering\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Open Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Macroscopic and Microscopic Spray Characteristics of Dimethyl Ether in a Constant Volume Spray Chamber Using a Mechanical Fuel Injection System for Automotive Applications
Abstract Spray investigations are critical for understanding internal combustion engine combustion. Optimised spray atomisation helps improve engine output/performance and reduce tailpipe emissions. The spray from the injector nozzle depends on nozzle hole diameter, fuel injection pressure, ambient density, pressure and temperature in the spray chamber, and test fuel properties. This study evaluated macroscopic and microscopic spray characteristics of dimethyl ether (DME) and baseline diesel under atmospheric conditions (1.013 bar pressure at 298 K temperature). It correlated the spray parameters with distinctive physicochemical properties of diesel and DME using dimensionless numbers, namely Reynolds number, Weber number, and Ohnesorge number. The fuel injection system consisted of a high-pressure mechanical injection pump and mechanical fuel injectors having an original equipment manufacturer fixed nozzle opening pressure in the constant volume spray chamber. The microscopic spray investigations were performed using a phase Doppler interferometer along the spray direction at three axial distances (50, 70, and 90 mm) from the nozzle. The three orthogonal spray droplet velocities of diesel and DME were compared. The droplet number-size distributions for baseline diesel and DME were compared. Macroscopic spray characteristics were evaluated using high-speed imaging. Reynolds number was higher for DME, leading to more turbulence in the spray and accelerating the spray breakup phenomenon. Weber number of DME was also much higher than baseline diesel due to its lower surface tension. The higher Weber and lower Ohnesorge numbers justified the finer droplets of DME sprays. DME showed superior spray atomization characteristics than baseline diesel, leading to superior fuel–air mixing and efficient and sootless combustion.