{"title":"机器学习的证伪主义观点","authors":"Patrik Reizinger","doi":"10.22503/inftars.xxiii.2023.2.7","DOIUrl":null,"url":null,"abstract":"Machine learning pushes the frontiers of algorithmic achievements, though the striving for state-of-the-art performance often obscures the fragility of enforcing decisions amid uncertainty. This paper interprets machine learning within Karl Popper’s epistemology. We assess machine learning paradigms’ fit for falsificationism and argue that the new interpretation can improve robustness. Though the price is to accept unambiguous decisions, the restriction of the hypothesis space still adds value. The context for our work is established by comparison with similar techniques and highlighting its limitations.","PeriodicalId":41114,"journal":{"name":"Informacios Tarsadalom","volume":"358 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Falsificationist View of Machine Learning\",\"authors\":\"Patrik Reizinger\",\"doi\":\"10.22503/inftars.xxiii.2023.2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning pushes the frontiers of algorithmic achievements, though the striving for state-of-the-art performance often obscures the fragility of enforcing decisions amid uncertainty. This paper interprets machine learning within Karl Popper’s epistemology. We assess machine learning paradigms’ fit for falsificationism and argue that the new interpretation can improve robustness. Though the price is to accept unambiguous decisions, the restriction of the hypothesis space still adds value. The context for our work is established by comparison with similar techniques and highlighting its limitations.\",\"PeriodicalId\":41114,\"journal\":{\"name\":\"Informacios Tarsadalom\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacios Tarsadalom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22503/inftars.xxiii.2023.2.7\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacios Tarsadalom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22503/inftars.xxiii.2023.2.7","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Machine learning pushes the frontiers of algorithmic achievements, though the striving for state-of-the-art performance often obscures the fragility of enforcing decisions amid uncertainty. This paper interprets machine learning within Karl Popper’s epistemology. We assess machine learning paradigms’ fit for falsificationism and argue that the new interpretation can improve robustness. Though the price is to accept unambiguous decisions, the restriction of the hypothesis space still adds value. The context for our work is established by comparison with similar techniques and highlighting its limitations.