{"title":"人工防护林林分结构对荒漠-绿洲交错带林下草本植物多样性的影响","authors":"Yan Yang, Zhengli Zhou, Liuji Shen, Yachong Zhao, Yuansheng Tang, Jiahe Tian","doi":"10.3390/d15101083","DOIUrl":null,"url":null,"abstract":"The relationship between the spatial structure of shelter forests and the diversity of understory herbaceous plants in desert–oasis ecotones is important for maintaining biodiversity indices and protecting the oasis ecosystem. In this paper, we explore the coupling relationship between tree layer structure (competition index, angle scale, neighborhood comparison, DBH, etc.) and understory herb diversity in the transition zone of shelter forest plots near oases and near deserts; in addition, we also aim to elucidate the dominant stand structure factors affecting herb biodiversity. The results indicated the following: A total of 13 herbaceous plant species were discovered in the transitional zone, with 11 species found near the oasis area and 4 species near the desert region. The Shannon, Simpson, and Pielou indices of understory herbaceous plants were significantly higher near the oasis area compared to the desert region. The Margalef index mean was higher in the oasis area compared to the desert region. Pearson and canonical correlation analyses revealed significant associations between specific stand structure indicators and diversity in the herbaceous layer. The results of the multiple linear regression analysis revealed that the competition index had a significant impact on the Shannon, Simpson, and Pielou diversity indices of the herbaceous layer in the understory of the shelterbelt forest near the oasis, with corresponding impact coefficients of 0.911, 0.936, and 0.831, respectively. The mingling degree was found to be the primary influencing factor for the Margalef index, with an impact coefficient of 0.825. However, in the understory of the shelterbelt forest near the desert, the neighborhood comparison ratio negatively affected the Shannon and Margalef indices, with impact coefficients of −0.634 and −0.736, respectively. Additionally, tree height negatively impacted the Simpson and Pielou indices, with impact coefficients of −0.645 and −0.677, respectively. In order to enhance the diversity of understory herbaceous species in the transitional zone and preserve the ecological system of the oasis, specific modifications to the forest structure and arrangement are essential. Pruning and thinning are necessary for shelterbelt forests located near desert regions, while shelterbelt forests near oases should use a suitable mix of tree species. These measures can help preserve or enhance the diversity of understory herbaceous plants.","PeriodicalId":56006,"journal":{"name":"Diversity-Basel","volume":"34 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Stand Structure of Artificial Shelter Forest on Understory Herb Diversity in Desert-Oasis Ecotone\",\"authors\":\"Yan Yang, Zhengli Zhou, Liuji Shen, Yachong Zhao, Yuansheng Tang, Jiahe Tian\",\"doi\":\"10.3390/d15101083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between the spatial structure of shelter forests and the diversity of understory herbaceous plants in desert–oasis ecotones is important for maintaining biodiversity indices and protecting the oasis ecosystem. In this paper, we explore the coupling relationship between tree layer structure (competition index, angle scale, neighborhood comparison, DBH, etc.) and understory herb diversity in the transition zone of shelter forest plots near oases and near deserts; in addition, we also aim to elucidate the dominant stand structure factors affecting herb biodiversity. The results indicated the following: A total of 13 herbaceous plant species were discovered in the transitional zone, with 11 species found near the oasis area and 4 species near the desert region. The Shannon, Simpson, and Pielou indices of understory herbaceous plants were significantly higher near the oasis area compared to the desert region. The Margalef index mean was higher in the oasis area compared to the desert region. Pearson and canonical correlation analyses revealed significant associations between specific stand structure indicators and diversity in the herbaceous layer. The results of the multiple linear regression analysis revealed that the competition index had a significant impact on the Shannon, Simpson, and Pielou diversity indices of the herbaceous layer in the understory of the shelterbelt forest near the oasis, with corresponding impact coefficients of 0.911, 0.936, and 0.831, respectively. The mingling degree was found to be the primary influencing factor for the Margalef index, with an impact coefficient of 0.825. However, in the understory of the shelterbelt forest near the desert, the neighborhood comparison ratio negatively affected the Shannon and Margalef indices, with impact coefficients of −0.634 and −0.736, respectively. Additionally, tree height negatively impacted the Simpson and Pielou indices, with impact coefficients of −0.645 and −0.677, respectively. In order to enhance the diversity of understory herbaceous species in the transitional zone and preserve the ecological system of the oasis, specific modifications to the forest structure and arrangement are essential. Pruning and thinning are necessary for shelterbelt forests located near desert regions, while shelterbelt forests near oases should use a suitable mix of tree species. These measures can help preserve or enhance the diversity of understory herbaceous plants.\",\"PeriodicalId\":56006,\"journal\":{\"name\":\"Diversity-Basel\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diversity-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/d15101083\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diversity-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/d15101083","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Effects of Stand Structure of Artificial Shelter Forest on Understory Herb Diversity in Desert-Oasis Ecotone
The relationship between the spatial structure of shelter forests and the diversity of understory herbaceous plants in desert–oasis ecotones is important for maintaining biodiversity indices and protecting the oasis ecosystem. In this paper, we explore the coupling relationship between tree layer structure (competition index, angle scale, neighborhood comparison, DBH, etc.) and understory herb diversity in the transition zone of shelter forest plots near oases and near deserts; in addition, we also aim to elucidate the dominant stand structure factors affecting herb biodiversity. The results indicated the following: A total of 13 herbaceous plant species were discovered in the transitional zone, with 11 species found near the oasis area and 4 species near the desert region. The Shannon, Simpson, and Pielou indices of understory herbaceous plants were significantly higher near the oasis area compared to the desert region. The Margalef index mean was higher in the oasis area compared to the desert region. Pearson and canonical correlation analyses revealed significant associations between specific stand structure indicators and diversity in the herbaceous layer. The results of the multiple linear regression analysis revealed that the competition index had a significant impact on the Shannon, Simpson, and Pielou diversity indices of the herbaceous layer in the understory of the shelterbelt forest near the oasis, with corresponding impact coefficients of 0.911, 0.936, and 0.831, respectively. The mingling degree was found to be the primary influencing factor for the Margalef index, with an impact coefficient of 0.825. However, in the understory of the shelterbelt forest near the desert, the neighborhood comparison ratio negatively affected the Shannon and Margalef indices, with impact coefficients of −0.634 and −0.736, respectively. Additionally, tree height negatively impacted the Simpson and Pielou indices, with impact coefficients of −0.645 and −0.677, respectively. In order to enhance the diversity of understory herbaceous species in the transitional zone and preserve the ecological system of the oasis, specific modifications to the forest structure and arrangement are essential. Pruning and thinning are necessary for shelterbelt forests located near desert regions, while shelterbelt forests near oases should use a suitable mix of tree species. These measures can help preserve or enhance the diversity of understory herbaceous plants.
期刊介绍:
Diversity (ISSN 1424-2818) is an international and interdisciplinary journal of science concerning diversity concept and application, diversity assessment and diversity preservation. It is focused on organismic and molecular diversity. It publishes reviews, regular research papers and short notes in the regular issues. Related news and announcements are also published. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. Full experimental details must be provided so that the results can be reproduced.