{"title":"矩形通道内两级电液动力气泵","authors":"Sotirios J. Tampouris, Antonios X. Moronis","doi":"10.37394/232013.2023.18.9","DOIUrl":null,"url":null,"abstract":"Electrohydrodynamic (EHD) fluid pumps generate physical flux in a dielectric fluid without using any moving parts. The advantages of EHD pumps are implemented in a wide variety of applications especially when miniaturization and/or noise absence are required, such as in cooling applications. Research efforts focus on improving existing concepts of efficiency optimization. Researchers are recently considering the concept of cascading stages, among other options. In this research, an experimental investigation of a two-stage wire-to-mesh EHD air pump has been made, providing information on the air velocity generated and the electrical power demand. Based on the testing results, a two-stage cascading EHD pump has significantly higher airflow velocity and efficiency than the conventional single-stage design. The two-stage structure was found to preserve the advantages of EHD pumping technology while being directly comparable in terms of EHD flow characteristics with conventional mechanical fans of similar dimensions.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Stage Electrohydrodynamic Gas Pump in a Rectangular Channel\",\"authors\":\"Sotirios J. Tampouris, Antonios X. Moronis\",\"doi\":\"10.37394/232013.2023.18.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrohydrodynamic (EHD) fluid pumps generate physical flux in a dielectric fluid without using any moving parts. The advantages of EHD pumps are implemented in a wide variety of applications especially when miniaturization and/or noise absence are required, such as in cooling applications. Research efforts focus on improving existing concepts of efficiency optimization. Researchers are recently considering the concept of cascading stages, among other options. In this research, an experimental investigation of a two-stage wire-to-mesh EHD air pump has been made, providing information on the air velocity generated and the electrical power demand. Based on the testing results, a two-stage cascading EHD pump has significantly higher airflow velocity and efficiency than the conventional single-stage design. The two-stage structure was found to preserve the advantages of EHD pumping technology while being directly comparable in terms of EHD flow characteristics with conventional mechanical fans of similar dimensions.\",\"PeriodicalId\":39418,\"journal\":{\"name\":\"WSEAS Transactions on Fluid Mechanics\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232013.2023.18.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2023.18.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A Two-Stage Electrohydrodynamic Gas Pump in a Rectangular Channel
Electrohydrodynamic (EHD) fluid pumps generate physical flux in a dielectric fluid without using any moving parts. The advantages of EHD pumps are implemented in a wide variety of applications especially when miniaturization and/or noise absence are required, such as in cooling applications. Research efforts focus on improving existing concepts of efficiency optimization. Researchers are recently considering the concept of cascading stages, among other options. In this research, an experimental investigation of a two-stage wire-to-mesh EHD air pump has been made, providing information on the air velocity generated and the electrical power demand. Based on the testing results, a two-stage cascading EHD pump has significantly higher airflow velocity and efficiency than the conventional single-stage design. The two-stage structure was found to preserve the advantages of EHD pumping technology while being directly comparable in terms of EHD flow characteristics with conventional mechanical fans of similar dimensions.
期刊介绍:
WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.