合成聚丙烯纤维增强混凝土抗拉性能的研究

Q3 Earth and Planetary Sciences Scientific Review Engineering and Environmental Sciences Pub Date : 2023-10-31 DOI:10.22630/srees.5218
Thunyawee Jienmaneechotchai, Piyawat Foytong, Pirat Khunkitti, Vanchai Sata, Prinya Chindaprasirt
{"title":"合成聚丙烯纤维增强混凝土抗拉性能的研究","authors":"Thunyawee Jienmaneechotchai, Piyawat Foytong, Pirat Khunkitti, Vanchai Sata, Prinya Chindaprasirt","doi":"10.22630/srees.5218","DOIUrl":null,"url":null,"abstract":"The research attempted to investigate the effect of polypropylene fibers (PP fibers) on the mechanical characteristics of concrete. According to ASTM C39/C39M and ASTM C 1609/C1609M, standard testing methods were used to examine the concrete compressive and flexural strength, post-cracking behavior, and toughness. The mechanical properties were evaluated at different ages of concrete curing, namely 1 day, 7 days, and 28 days, and for different quantities of fiber volume portions, specifically 0.0%, 0.5%, and 1.0%. The results demonstrate that a fiber volume of 0.5% is the most effective in obtaining the highest compressive strength. The recorded values at the related testing ages were 31.07 MPa, 41.51 MPa, and 46.68 MPa. Additionally, the utilization of 0.5% and 1.0% volume of PP fiber in concrete resulted in improved flexural strength and post-cracking performance. The toughness values for these mixes were 2.0 and 2.6 times higher than those for the plain concrete. Upon analyzing the fracture surface, there was a homogeneous distribution of fibers, which played a significant role in enhancing the overall functionality of the concrete. The research validated that the inclusion of polypropylene fibers substantially enhanced the mechanical characteristics of concrete, emphasizing the potential of fiber reinforcement in concrete-based implementations.","PeriodicalId":38397,"journal":{"name":"Scientific Review Engineering and Environmental Sciences","volume":"131 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of tensile performance of concrete by using synthetic polypropylene fibers\",\"authors\":\"Thunyawee Jienmaneechotchai, Piyawat Foytong, Pirat Khunkitti, Vanchai Sata, Prinya Chindaprasirt\",\"doi\":\"10.22630/srees.5218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research attempted to investigate the effect of polypropylene fibers (PP fibers) on the mechanical characteristics of concrete. According to ASTM C39/C39M and ASTM C 1609/C1609M, standard testing methods were used to examine the concrete compressive and flexural strength, post-cracking behavior, and toughness. The mechanical properties were evaluated at different ages of concrete curing, namely 1 day, 7 days, and 28 days, and for different quantities of fiber volume portions, specifically 0.0%, 0.5%, and 1.0%. The results demonstrate that a fiber volume of 0.5% is the most effective in obtaining the highest compressive strength. The recorded values at the related testing ages were 31.07 MPa, 41.51 MPa, and 46.68 MPa. Additionally, the utilization of 0.5% and 1.0% volume of PP fiber in concrete resulted in improved flexural strength and post-cracking performance. The toughness values for these mixes were 2.0 and 2.6 times higher than those for the plain concrete. Upon analyzing the fracture surface, there was a homogeneous distribution of fibers, which played a significant role in enhancing the overall functionality of the concrete. The research validated that the inclusion of polypropylene fibers substantially enhanced the mechanical characteristics of concrete, emphasizing the potential of fiber reinforcement in concrete-based implementations.\",\"PeriodicalId\":38397,\"journal\":{\"name\":\"Scientific Review Engineering and Environmental Sciences\",\"volume\":\"131 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Review Engineering and Environmental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/srees.5218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Review Engineering and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/srees.5218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究试图探讨聚丙烯纤维(PP纤维)对混凝土力学特性的影响。根据ASTM C39/C39M和ASTM C1609 /C1609M的标准测试方法,对混凝土的抗压和抗弯强度、开裂后性能和韧性进行了测试。在混凝土养护1天、7天、28天的不同龄期,以及纤维体积分数0.0%、0.5%、1.0%的不同掺量下,对其力学性能进行了评价。结果表明,当纤维体积为0.5%时,可获得最高的抗压强度。相关试验年龄的记录值分别为31.07 MPa、41.51 MPa和46.68 MPa。此外,在混凝土中添加0.5%和1.0%体积的PP纤维可以提高混凝土的抗弯强度和后裂性能。其韧性值分别是普通混凝土的2.0倍和2.6倍。通过对断裂面的分析,纤维分布均匀,对增强混凝土的整体功能有重要作用。该研究证实,聚丙烯纤维的加入大大增强了混凝土的力学特性,强调了纤维增强在混凝土基础实施中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement of tensile performance of concrete by using synthetic polypropylene fibers
The research attempted to investigate the effect of polypropylene fibers (PP fibers) on the mechanical characteristics of concrete. According to ASTM C39/C39M and ASTM C 1609/C1609M, standard testing methods were used to examine the concrete compressive and flexural strength, post-cracking behavior, and toughness. The mechanical properties were evaluated at different ages of concrete curing, namely 1 day, 7 days, and 28 days, and for different quantities of fiber volume portions, specifically 0.0%, 0.5%, and 1.0%. The results demonstrate that a fiber volume of 0.5% is the most effective in obtaining the highest compressive strength. The recorded values at the related testing ages were 31.07 MPa, 41.51 MPa, and 46.68 MPa. Additionally, the utilization of 0.5% and 1.0% volume of PP fiber in concrete resulted in improved flexural strength and post-cracking performance. The toughness values for these mixes were 2.0 and 2.6 times higher than those for the plain concrete. Upon analyzing the fracture surface, there was a homogeneous distribution of fibers, which played a significant role in enhancing the overall functionality of the concrete. The research validated that the inclusion of polypropylene fibers substantially enhanced the mechanical characteristics of concrete, emphasizing the potential of fiber reinforcement in concrete-based implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Review Engineering and Environmental Sciences
Scientific Review Engineering and Environmental Sciences Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
1.50
自引率
0.00%
发文量
24
审稿时长
26 weeks
期刊介绍: Scientific Review Engineering and Environmental Sciences [Przegląd Naukowy Inżynieria i Kształtowanie Środowiska] covers broad area of knowledge and practice on fields such as: sustainable development, landscaping of non-urbanized lands, environmental engineering, construction projects engineering land management, protection and land reclamation, environmental impact of investments, ecology, hydrology and water management, ground-water monitoring and restoration, geotechnical engineering, meteorology and connecting subjects. Authors are welcome to submit theoretical and practice-oriented papers containing detailed case studies within above mentioned disciplines. However, theoretical papers should contain part with practical application of the theory presented. Papers (in Polish or English languages) are accepted for publication after obtaining positive opinions of two reviewers. Papers published elsewhere are not accepted.
期刊最新文献
Enhancement of tensile performance of concrete by using synthetic polypropylene fibers Labor costs in a construction company in the Czech Republic – a case study A systematic review of clay shale research development for slope construction Implementing GIS and linear regression models to investigate partial building failures Evaluation of physical and mechanical properties of cement-treated base incorporating crushed waste tires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1