{"title":"教育、办公和图书馆建筑的燃料负荷及其构成和隔间特征","authors":"Namita Nayak, Lakshmi Priya Subramanian","doi":"10.1002/fam.3178","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the fire load data in educational, office and library buildings, obtained through an extensive inventory survey. This data collection effort is prompted by a growing need to simulate compartment fires, wherein estimating realistic fire scenarios is essential to assess the level of fire severity in a structure, and consequently the strength of the various structural members at elevated temperatures. The attributes of compartment fires primarily depend upon the fuel load and its composition, compartment dimensions, ventilation characteristics, and construction materials. Despite an acute need, fire load data across the world is scarce and outdated, and does not reflect the change in the type of materials in-use today. The survey data presented in this paper is collected from 108 rooms in 10 educational buildings, 51 rooms in three office buildings, and 13 rooms in a library building. This paper also presents the composition of fire loads and the levels of ventilation in these buildings. The studies show that fire loads can vary significantly depending on the room-use; thereby basing fire load values solely on the overall category of a building may result in either conservative or unsafe design. This study also finds that certain room types (e.g., computer labs) have significant plastic-based fuels, indicating that typical modelling recommendations based on cellulosic fuels for heat release rate, combustion heat, etc. may not always be appropriate. The paper finally examines the statistical distribution that best describes the measured values of the fire load densities.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 2","pages":"208-221"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuel loads and their composition, and compartment characteristics in educational, office and library buildings\",\"authors\":\"Namita Nayak, Lakshmi Priya Subramanian\",\"doi\":\"10.1002/fam.3178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents the fire load data in educational, office and library buildings, obtained through an extensive inventory survey. This data collection effort is prompted by a growing need to simulate compartment fires, wherein estimating realistic fire scenarios is essential to assess the level of fire severity in a structure, and consequently the strength of the various structural members at elevated temperatures. The attributes of compartment fires primarily depend upon the fuel load and its composition, compartment dimensions, ventilation characteristics, and construction materials. Despite an acute need, fire load data across the world is scarce and outdated, and does not reflect the change in the type of materials in-use today. The survey data presented in this paper is collected from 108 rooms in 10 educational buildings, 51 rooms in three office buildings, and 13 rooms in a library building. This paper also presents the composition of fire loads and the levels of ventilation in these buildings. The studies show that fire loads can vary significantly depending on the room-use; thereby basing fire load values solely on the overall category of a building may result in either conservative or unsafe design. This study also finds that certain room types (e.g., computer labs) have significant plastic-based fuels, indicating that typical modelling recommendations based on cellulosic fuels for heat release rate, combustion heat, etc. may not always be appropriate. The paper finally examines the statistical distribution that best describes the measured values of the fire load densities.</p>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"48 2\",\"pages\":\"208-221\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3178\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3178","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fuel loads and their composition, and compartment characteristics in educational, office and library buildings
This paper presents the fire load data in educational, office and library buildings, obtained through an extensive inventory survey. This data collection effort is prompted by a growing need to simulate compartment fires, wherein estimating realistic fire scenarios is essential to assess the level of fire severity in a structure, and consequently the strength of the various structural members at elevated temperatures. The attributes of compartment fires primarily depend upon the fuel load and its composition, compartment dimensions, ventilation characteristics, and construction materials. Despite an acute need, fire load data across the world is scarce and outdated, and does not reflect the change in the type of materials in-use today. The survey data presented in this paper is collected from 108 rooms in 10 educational buildings, 51 rooms in three office buildings, and 13 rooms in a library building. This paper also presents the composition of fire loads and the levels of ventilation in these buildings. The studies show that fire loads can vary significantly depending on the room-use; thereby basing fire load values solely on the overall category of a building may result in either conservative or unsafe design. This study also finds that certain room types (e.g., computer labs) have significant plastic-based fuels, indicating that typical modelling recommendations based on cellulosic fuels for heat release rate, combustion heat, etc. may not always be appropriate. The paper finally examines the statistical distribution that best describes the measured values of the fire load densities.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.