不同颗粒类型的单流旋风分离器经验分离效率理论评价及实验验证

IF 2.5 4区 工程技术 Q3 CHEMISTRY, ANALYTICAL Separations Pub Date : 2023-09-25 DOI:10.3390/separations10100522
Vinzenz Klapper, Giovanni Luzi, Soebiakto Loekman, Antonio Delgado
{"title":"不同颗粒类型的单流旋风分离器经验分离效率理论评价及实验验证","authors":"Vinzenz Klapper, Giovanni Luzi, Soebiakto Loekman, Antonio Delgado","doi":"10.3390/separations10100522","DOIUrl":null,"url":null,"abstract":"Cyclones serve as essential devices in various industries for the removal of particulate matter from gases and liquids, contributing to improved equipment efficiency and longevity by mitigating the wear and damage caused by dust and small particles. Uniflow cyclones offer improved accessibility due to their predominantly horizontal orientation. This characteristic enhances the ease of maintenance and operation. This study focuses on investigating the collection efficiency of uniflow centrifugal cyclones for oil mist and fine dust particles ranging from 0.5µm to 29 µm in diameter. The investigation is based on the specific vane angles βv of a swirl inducer from 0∘ to 60∘ at a flow rate V˙ of 130 Ls−1. The measured collection efficiencies are compared with theoretical efficiencies calculated using six different empirical approaches. The different results for oil and fine dust particles are discussed. Comparison of the experimental results with the empirical models demonstrated that certain models closely matched the observed separation efficiencies for different aerosols and vane angles βv (respectively, their induced radial velocities V). Through a systematic examination, this research aims to provide more insight into the validity of empirical approaches for different particle types and compositions using a uniflow-cyclonic system.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"5 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Empirical Separation Efficiency Theories for Uniflow Cyclones for Different Particle Types and Experimental Verification\",\"authors\":\"Vinzenz Klapper, Giovanni Luzi, Soebiakto Loekman, Antonio Delgado\",\"doi\":\"10.3390/separations10100522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyclones serve as essential devices in various industries for the removal of particulate matter from gases and liquids, contributing to improved equipment efficiency and longevity by mitigating the wear and damage caused by dust and small particles. Uniflow cyclones offer improved accessibility due to their predominantly horizontal orientation. This characteristic enhances the ease of maintenance and operation. This study focuses on investigating the collection efficiency of uniflow centrifugal cyclones for oil mist and fine dust particles ranging from 0.5µm to 29 µm in diameter. The investigation is based on the specific vane angles βv of a swirl inducer from 0∘ to 60∘ at a flow rate V˙ of 130 Ls−1. The measured collection efficiencies are compared with theoretical efficiencies calculated using six different empirical approaches. The different results for oil and fine dust particles are discussed. Comparison of the experimental results with the empirical models demonstrated that certain models closely matched the observed separation efficiencies for different aerosols and vane angles βv (respectively, their induced radial velocities V). Through a systematic examination, this research aims to provide more insight into the validity of empirical approaches for different particle types and compositions using a uniflow-cyclonic system.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/separations10100522\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/separations10100522","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

旋风分离器是各种行业中去除气体和液体中颗粒物质的基本设备,通过减轻灰尘和小颗粒造成的磨损和损坏,有助于提高设备效率和寿命。单流气旋由于其主要的水平方向,提供了更好的可达性。这一特性提高了维护和操作的便利性。本研究主要研究了单流离心旋风分离器对直径为0.5µm至29µm的油雾和细尘颗粒的收集效率。这项研究是基于一个涡流诱导器在0°到60°的范围内,在流量V˙130 l−1的情况下,叶片的特定角度βv。测量的收集效率与使用六种不同的经验方法计算的理论效率进行了比较。讨论了油类和细尘颗粒的不同结果。实验结果与经验模型的比较表明,某些模型与观察到的不同气溶胶和叶片角度βv(分别为其诱导径向速度V)的分离效率非常吻合。通过系统的检验,本研究旨在进一步深入了解使用单流-旋风系统的不同颗粒类型和组成的经验方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Empirical Separation Efficiency Theories for Uniflow Cyclones for Different Particle Types and Experimental Verification
Cyclones serve as essential devices in various industries for the removal of particulate matter from gases and liquids, contributing to improved equipment efficiency and longevity by mitigating the wear and damage caused by dust and small particles. Uniflow cyclones offer improved accessibility due to their predominantly horizontal orientation. This characteristic enhances the ease of maintenance and operation. This study focuses on investigating the collection efficiency of uniflow centrifugal cyclones for oil mist and fine dust particles ranging from 0.5µm to 29 µm in diameter. The investigation is based on the specific vane angles βv of a swirl inducer from 0∘ to 60∘ at a flow rate V˙ of 130 Ls−1. The measured collection efficiencies are compared with theoretical efficiencies calculated using six different empirical approaches. The different results for oil and fine dust particles are discussed. Comparison of the experimental results with the empirical models demonstrated that certain models closely matched the observed separation efficiencies for different aerosols and vane angles βv (respectively, their induced radial velocities V). Through a systematic examination, this research aims to provide more insight into the validity of empirical approaches for different particle types and compositions using a uniflow-cyclonic system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separations
Separations Chemistry-Analytical Chemistry
CiteScore
3.00
自引率
15.40%
发文量
342
审稿时长
12 weeks
期刊介绍: Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Manuscripts regarding research proposals and research ideas will be particularly welcomed. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users. The scope of the journal includes but is not limited to: Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.) Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry) Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization
期刊最新文献
Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction Central European Group for Separation Sciences (CEGSS)—Brief History and Memoirs on the Creation and Activity Effect of Fly Ash on the Mass Transfer Performance of CO2 Removal Using MEA and DEA Solutions in a Packed Tower Adsorption Performance and Mechanism of H3PO4-Modified Banana Peel Hydrothermal Carbon on Pb(II)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1