防止淡水盐碱化:目前的标准是否达标?

IF 6.8 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Wiley Interdisciplinary Reviews: Water Pub Date : 2023-09-25 DOI:10.1002/wat2.1694
Martyn G. Kelly, Gary Free, Agnieszka Kolada, Geoff Phillips, Stuart Warner, Georg Wolfram, Sandra Poikane
{"title":"防止淡水盐碱化:目前的标准是否达标?","authors":"Martyn G. Kelly, Gary Free, Agnieszka Kolada, Geoff Phillips, Stuart Warner, Georg Wolfram, Sandra Poikane","doi":"10.1002/wat2.1694","DOIUrl":null,"url":null,"abstract":"Abstract Salinization is a global threat to freshwater habitats that has been intensified by climate change. Monitoring, assessment and management of salinity is therefore essential. The first step is to set criteria that are sufficiently stringent to protect ecosystem health. However, many countries have not yet defined criteria, and there are substantial differences between criteria. This has been noted in the EU, where salinity is a required “supporting element” for ecological status in inland waters but also for implementation of UN Sustainable Development Goal (SDG) indicator 6.3.2. for “good ambient water quality” where different approaches and widely different threshold values were reported for salinity criteria. Much of this information has not been published and is difficult to access, hindering further efforts to address the problem. We first discuss the implications of salinization for freshwater ecological health. We go on to discuss the principles and guidelines on how salinity criteria to protect ecology should be established. Next, we review salinity criteria submitted as part of implementation of SDG indicator 6.3.2 and the EU Water Framework Directive. Finally, we discuss setting salinity thresholds in an already‐warming world and the challenges facing anyone trying to develop salinity criteria to protect freshwater ecosystems. This article is categorized under: Water and Life > Stresses and Pressures on Ecosystems Water and Life > Conservation, Management, and Awareness Science of Water > Water Quality","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Warding off freshwater salinization: Do current criteria measure up?\",\"authors\":\"Martyn G. Kelly, Gary Free, Agnieszka Kolada, Geoff Phillips, Stuart Warner, Georg Wolfram, Sandra Poikane\",\"doi\":\"10.1002/wat2.1694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Salinization is a global threat to freshwater habitats that has been intensified by climate change. Monitoring, assessment and management of salinity is therefore essential. The first step is to set criteria that are sufficiently stringent to protect ecosystem health. However, many countries have not yet defined criteria, and there are substantial differences between criteria. This has been noted in the EU, where salinity is a required “supporting element” for ecological status in inland waters but also for implementation of UN Sustainable Development Goal (SDG) indicator 6.3.2. for “good ambient water quality” where different approaches and widely different threshold values were reported for salinity criteria. Much of this information has not been published and is difficult to access, hindering further efforts to address the problem. We first discuss the implications of salinization for freshwater ecological health. We go on to discuss the principles and guidelines on how salinity criteria to protect ecology should be established. Next, we review salinity criteria submitted as part of implementation of SDG indicator 6.3.2 and the EU Water Framework Directive. Finally, we discuss setting salinity thresholds in an already‐warming world and the challenges facing anyone trying to develop salinity criteria to protect freshwater ecosystems. This article is categorized under: Water and Life > Stresses and Pressures on Ecosystems Water and Life > Conservation, Management, and Awareness Science of Water > Water Quality\",\"PeriodicalId\":23774,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wat2.1694\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wat2.1694","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

盐碱化是对淡水栖息地的全球性威胁,气候变化加剧了这一威胁。因此,监测、评估和管理盐度是必不可少的。第一步是制定足够严格的标准来保护生态系统的健康。然而,许多国家尚未确定标准,各标准之间存在很大差异。欧盟已经注意到这一点,在欧盟,盐度是内陆水域生态状况所需的“支持因素”,也是联合国可持续发展目标(SDG)指标6.3.2的实施。就“环境水质良好”而言,含盐量标准采用的方法不同,阈值差异很大。这些资料大部分没有发表,也很难取得,妨碍了进一步努力解决这个问题。我们首先讨论了盐碱化对淡水生态健康的影响。我们接着讨论了如何建立保护生态的盐度标准的原则和指导方针。接下来,我们将审查作为可持续发展目标指标6.3.2和欧盟水框架指令实施的一部分提交的盐度标准。最后,我们讨论了在已经变暖的世界中设置盐度阈值以及试图制定盐度标准以保护淡水生态系统的任何人所面临的挑战。本文分类如下:水与生命;对生态系统、水和生命的压力水资源保护、管理与意识科学水的质量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Warding off freshwater salinization: Do current criteria measure up?
Abstract Salinization is a global threat to freshwater habitats that has been intensified by climate change. Monitoring, assessment and management of salinity is therefore essential. The first step is to set criteria that are sufficiently stringent to protect ecosystem health. However, many countries have not yet defined criteria, and there are substantial differences between criteria. This has been noted in the EU, where salinity is a required “supporting element” for ecological status in inland waters but also for implementation of UN Sustainable Development Goal (SDG) indicator 6.3.2. for “good ambient water quality” where different approaches and widely different threshold values were reported for salinity criteria. Much of this information has not been published and is difficult to access, hindering further efforts to address the problem. We first discuss the implications of salinization for freshwater ecological health. We go on to discuss the principles and guidelines on how salinity criteria to protect ecology should be established. Next, we review salinity criteria submitted as part of implementation of SDG indicator 6.3.2 and the EU Water Framework Directive. Finally, we discuss setting salinity thresholds in an already‐warming world and the challenges facing anyone trying to develop salinity criteria to protect freshwater ecosystems. This article is categorized under: Water and Life > Stresses and Pressures on Ecosystems Water and Life > Conservation, Management, and Awareness Science of Water > Water Quality
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Water
Wiley Interdisciplinary Reviews: Water Environmental Science-Ecology
CiteScore
16.60
自引率
3.70%
发文量
56
期刊介绍: The WIREs series is truly unique, blending the best aspects of encyclopedic reference works and review journals into a dynamic online format. These remarkable resources foster a research culture that transcends disciplinary boundaries, all while upholding the utmost scientific and presentation excellence. However, they go beyond traditional publications and are, in essence, ever-evolving databases of the latest cutting-edge reviews.
期刊最新文献
Holocene sedimentary history of the Silala River (Antofagasta Region, Chile) MAD Water: Integrating Modular, Adaptive, and Decentralized Approaches for Water Security in the Climate Change Era. Advances and gaps in the science and practice of impact‐based forecasting of droughts The geological evolution of the Silala River basin, Central Andes Hydrogeological characterization of the Silala River catchment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1