北极振荡的增加解释了俄罗斯野火的大部分年际变化

IF 2.7 3区 农林科学 Q2 ECOLOGY Frontiers in Forests and Global Change Pub Date : 2023-09-25 DOI:10.3389/ffgc.2023.1188057
Andrei G. Lapenis, Leonid N. Yurganov
{"title":"北极振荡的增加解释了俄罗斯野火的大部分年际变化","authors":"Andrei G. Lapenis, Leonid N. Yurganov","doi":"10.3389/ffgc.2023.1188057","DOIUrl":null,"url":null,"abstract":"Over the past two decades, the escalating emissions of greenhouse gases from boreal wildfires in the Northern Hemisphere have drawn significant attention, underscoring an unprecedented wildfire season in 2021. Our calculations indicate that between 2002 and 2020, wildfires in Russia released approximately 726 ± 280 Tg CO 2eqv yr −1 . This aligns closely with similar estimates derived from remote sensing data, far surpassing the earlier approximations found in the Russian National Inventory Report (NIR) by a factor of 2 to 3. Notably, in 2021 alone, Russia’s wildfires emitted an exceptionally high amount of 1,700 Tg CO 2eqv , exceeding the carbon emissions from the country’s fossil fuel consumption. Consequently, this situation led to an almost complete counterbalance of carbon assimilation by Russian forests. Our analysis attributes over 50% of the variation in wildfire frequency between 2002 and 2021 to shifts in the Arctic Oscillation (AO). This suggests a potential for utilizing AO as a predictive variable for wildfires. It’s noteworthy that the AO itself is influenced by the sustained regression of Arctic sea-ice. From this, it can be inferred that in the foreseeable future, Russian forests might undergo a transition from their role as carbon sinks to the potential net contributors of carbon to the atmosphere.","PeriodicalId":12538,"journal":{"name":"Frontiers in Forests and Global Change","volume":"19 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increase in Arctic Oscillations explains most interannual variability in Russia’s wildfires\",\"authors\":\"Andrei G. Lapenis, Leonid N. Yurganov\",\"doi\":\"10.3389/ffgc.2023.1188057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past two decades, the escalating emissions of greenhouse gases from boreal wildfires in the Northern Hemisphere have drawn significant attention, underscoring an unprecedented wildfire season in 2021. Our calculations indicate that between 2002 and 2020, wildfires in Russia released approximately 726 ± 280 Tg CO 2eqv yr −1 . This aligns closely with similar estimates derived from remote sensing data, far surpassing the earlier approximations found in the Russian National Inventory Report (NIR) by a factor of 2 to 3. Notably, in 2021 alone, Russia’s wildfires emitted an exceptionally high amount of 1,700 Tg CO 2eqv , exceeding the carbon emissions from the country’s fossil fuel consumption. Consequently, this situation led to an almost complete counterbalance of carbon assimilation by Russian forests. Our analysis attributes over 50% of the variation in wildfire frequency between 2002 and 2021 to shifts in the Arctic Oscillation (AO). This suggests a potential for utilizing AO as a predictive variable for wildfires. It’s noteworthy that the AO itself is influenced by the sustained regression of Arctic sea-ice. From this, it can be inferred that in the foreseeable future, Russian forests might undergo a transition from their role as carbon sinks to the potential net contributors of carbon to the atmosphere.\",\"PeriodicalId\":12538,\"journal\":{\"name\":\"Frontiers in Forests and Global Change\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Forests and Global Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ffgc.2023.1188057\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Forests and Global Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffgc.2023.1188057","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在过去二十年中,北半球北方野火造成的温室气体排放不断增加,引起了人们的极大关注,突显了2021年前所未有的野火季节。我们的计算表明,在2002年至2020年期间,俄罗斯的野火释放了大约726±280 Tg CO 2eqv yr - 1。这与从遥感数据得出的类似估计值密切一致,远远超过俄罗斯国家清单报告(NIR)中发现的较早的近似值,高出2至3倍。值得注意的是,仅在2021年,俄罗斯的野火就排放了异常高的1,700 Tg CO 2eqv,超过了该国化石燃料消耗的碳排放量。因此,这种情况导致俄罗斯森林的碳吸收几乎完全平衡。我们的分析将2002年至2021年间野火频率变化的50%以上归因于北极涛动(AO)的变化。这表明有可能利用AO作为野火的预测变量。值得注意的是,AO本身受到北极海冰持续消退的影响。由此可以推断,在可预见的未来,俄罗斯森林可能经历从碳汇角色向大气碳的潜在净贡献者的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increase in Arctic Oscillations explains most interannual variability in Russia’s wildfires
Over the past two decades, the escalating emissions of greenhouse gases from boreal wildfires in the Northern Hemisphere have drawn significant attention, underscoring an unprecedented wildfire season in 2021. Our calculations indicate that between 2002 and 2020, wildfires in Russia released approximately 726 ± 280 Tg CO 2eqv yr −1 . This aligns closely with similar estimates derived from remote sensing data, far surpassing the earlier approximations found in the Russian National Inventory Report (NIR) by a factor of 2 to 3. Notably, in 2021 alone, Russia’s wildfires emitted an exceptionally high amount of 1,700 Tg CO 2eqv , exceeding the carbon emissions from the country’s fossil fuel consumption. Consequently, this situation led to an almost complete counterbalance of carbon assimilation by Russian forests. Our analysis attributes over 50% of the variation in wildfire frequency between 2002 and 2021 to shifts in the Arctic Oscillation (AO). This suggests a potential for utilizing AO as a predictive variable for wildfires. It’s noteworthy that the AO itself is influenced by the sustained regression of Arctic sea-ice. From this, it can be inferred that in the foreseeable future, Russian forests might undergo a transition from their role as carbon sinks to the potential net contributors of carbon to the atmosphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
6.20%
发文量
256
审稿时长
12 weeks
期刊最新文献
Arbuscular mycorrhizal and ectomycorrhizal plants together shape seedling diversity in a subtropical forest Juvenile hormone III induction reveals key genes in general metabolism, pheromone biosynthesis, and detoxification in Eurasian spruce bark beetle Multi-dimensional temperature sensitivity of protected tropical mountain rain forests Accelerating decline of wildfires in China in the 21st century Factors driving carbon accumulation in forest biomass and soil organic carbon across natural forests and planted forests in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1