Alessio Caravella, Giuseppe Prenesti, Salvatore De Luca, Maria Turano, Flaviano Testa, Rossella Girimonte
{"title":"用非线性多元优化评价沸石13X流化床CO2吸附参数","authors":"Alessio Caravella, Giuseppe Prenesti, Salvatore De Luca, Maria Turano, Flaviano Testa, Rossella Girimonte","doi":"10.3390/separations10110558","DOIUrl":null,"url":null,"abstract":"This work is part of a research project aimed at studying potential sorbents for CO2 capture. The main parameters characterising the adsorption process of zeolite 13X were derived with the aim of overcoming the limits of experimental analysis and thus predicting the performances of the materials of interest. In particular, the main parameters that control the adsorption process of CO2 in zeolite 13X were evaluated through parametric optimisation. This systematic procedure allows for the prediction of the performances of the materials at different operating conditions, identifying the most suitable ones for the case under consideration. Another important application lies in the possibility of a preliminary study of a potential process scale-up for future industrial use. The captured carbon dioxide can be stored or used as a reagent in the production of products with higher economic values, such as methanol, DME and others.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"35 11","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of CO2 Adsorption Parameters in Fluidised Zeolite 13X Beds Using Non-Linear Multivariate Optimisation\",\"authors\":\"Alessio Caravella, Giuseppe Prenesti, Salvatore De Luca, Maria Turano, Flaviano Testa, Rossella Girimonte\",\"doi\":\"10.3390/separations10110558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is part of a research project aimed at studying potential sorbents for CO2 capture. The main parameters characterising the adsorption process of zeolite 13X were derived with the aim of overcoming the limits of experimental analysis and thus predicting the performances of the materials of interest. In particular, the main parameters that control the adsorption process of CO2 in zeolite 13X were evaluated through parametric optimisation. This systematic procedure allows for the prediction of the performances of the materials at different operating conditions, identifying the most suitable ones for the case under consideration. Another important application lies in the possibility of a preliminary study of a potential process scale-up for future industrial use. The captured carbon dioxide can be stored or used as a reagent in the production of products with higher economic values, such as methanol, DME and others.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":\"35 11\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/separations10110558\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/separations10110558","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Evaluation of CO2 Adsorption Parameters in Fluidised Zeolite 13X Beds Using Non-Linear Multivariate Optimisation
This work is part of a research project aimed at studying potential sorbents for CO2 capture. The main parameters characterising the adsorption process of zeolite 13X were derived with the aim of overcoming the limits of experimental analysis and thus predicting the performances of the materials of interest. In particular, the main parameters that control the adsorption process of CO2 in zeolite 13X were evaluated through parametric optimisation. This systematic procedure allows for the prediction of the performances of the materials at different operating conditions, identifying the most suitable ones for the case under consideration. Another important application lies in the possibility of a preliminary study of a potential process scale-up for future industrial use. The captured carbon dioxide can be stored or used as a reagent in the production of products with higher economic values, such as methanol, DME and others.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization