{"title":"纺织品和纳米纤维中的二氧化硅气凝胶:合成技术和包埋策略的综合综述","authors":"Prashant D. Jinde, M. Y. Gudiyawar","doi":"10.1080/00405000.2023.2274630","DOIUrl":null,"url":null,"abstract":"AbstractSilica aerogel is a remarkable material known for its exceptional thermal insulation properties and low density. The synthesis of silica aerogel involves a sol–gel process, which consists of gelation, aging, and drying steps. This process allows for the formation of a highly porous, interconnected network structure. Silica aerogel exhibits unique mechanical properties, such as high compressibility and brittleness, which can be improved through various reinforcement techniques. In this study, four different strategies for reinforcing silica aerogel to enhance its mechanical properties are reviewed. These strategies include the incorporation of hybridization of silica aerogels, compounding the silica network with a polymer, embedding fibers into a silica matrix, padding silica aerogel into multilayer nonwovens/nanofibers, and many more. Each method offers a distinct mechanism for reinforcing the aerogel matrix and improving its strength, flexibility, and durability. Moreover, the electrospinning process is explored as a method for fabricating silica aerogel-embedded nanofibers. Electrospinning equipment, including spinnerets and power supplies, is discussed, along with various techniques used to control fiber morphology and alignment. The integration of silica aerogel into nanofiber provides an opportunity to create lightweight, flexible composites with improved mechanical and thermal properties, making them promising materials for applications requiring efficient heat management that opens up avenues for various technological applications.Keywords: Silica aerogelsilica aerogel compositenanofiberneedle and needleless electrospinningthermal behavior of silica aerogelsilica aerogel in textile Disclosure StatementNo potential conflict of interest was reported by the author(s).","PeriodicalId":49978,"journal":{"name":"Journal of the Textile Institute","volume":"31 10","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silica aerogel in textiles and nanofibers: a comprehensive review of synthesis techniques and embedding strategies\",\"authors\":\"Prashant D. Jinde, M. Y. Gudiyawar\",\"doi\":\"10.1080/00405000.2023.2274630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractSilica aerogel is a remarkable material known for its exceptional thermal insulation properties and low density. The synthesis of silica aerogel involves a sol–gel process, which consists of gelation, aging, and drying steps. This process allows for the formation of a highly porous, interconnected network structure. Silica aerogel exhibits unique mechanical properties, such as high compressibility and brittleness, which can be improved through various reinforcement techniques. In this study, four different strategies for reinforcing silica aerogel to enhance its mechanical properties are reviewed. These strategies include the incorporation of hybridization of silica aerogels, compounding the silica network with a polymer, embedding fibers into a silica matrix, padding silica aerogel into multilayer nonwovens/nanofibers, and many more. Each method offers a distinct mechanism for reinforcing the aerogel matrix and improving its strength, flexibility, and durability. Moreover, the electrospinning process is explored as a method for fabricating silica aerogel-embedded nanofibers. Electrospinning equipment, including spinnerets and power supplies, is discussed, along with various techniques used to control fiber morphology and alignment. The integration of silica aerogel into nanofiber provides an opportunity to create lightweight, flexible composites with improved mechanical and thermal properties, making them promising materials for applications requiring efficient heat management that opens up avenues for various technological applications.Keywords: Silica aerogelsilica aerogel compositenanofiberneedle and needleless electrospinningthermal behavior of silica aerogelsilica aerogel in textile Disclosure StatementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":49978,\"journal\":{\"name\":\"Journal of the Textile Institute\",\"volume\":\"31 10\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Textile Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00405000.2023.2274630\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Textile Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00405000.2023.2274630","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Silica aerogel in textiles and nanofibers: a comprehensive review of synthesis techniques and embedding strategies
AbstractSilica aerogel is a remarkable material known for its exceptional thermal insulation properties and low density. The synthesis of silica aerogel involves a sol–gel process, which consists of gelation, aging, and drying steps. This process allows for the formation of a highly porous, interconnected network structure. Silica aerogel exhibits unique mechanical properties, such as high compressibility and brittleness, which can be improved through various reinforcement techniques. In this study, four different strategies for reinforcing silica aerogel to enhance its mechanical properties are reviewed. These strategies include the incorporation of hybridization of silica aerogels, compounding the silica network with a polymer, embedding fibers into a silica matrix, padding silica aerogel into multilayer nonwovens/nanofibers, and many more. Each method offers a distinct mechanism for reinforcing the aerogel matrix and improving its strength, flexibility, and durability. Moreover, the electrospinning process is explored as a method for fabricating silica aerogel-embedded nanofibers. Electrospinning equipment, including spinnerets and power supplies, is discussed, along with various techniques used to control fiber morphology and alignment. The integration of silica aerogel into nanofiber provides an opportunity to create lightweight, flexible composites with improved mechanical and thermal properties, making them promising materials for applications requiring efficient heat management that opens up avenues for various technological applications.Keywords: Silica aerogelsilica aerogel compositenanofiberneedle and needleless electrospinningthermal behavior of silica aerogelsilica aerogel in textile Disclosure StatementNo potential conflict of interest was reported by the author(s).
期刊介绍:
The Journal of The Textile Institute welcomes papers concerning research and innovation, reflecting the professional interests of the Textile Institute in science, engineering, economics, management and design related to the textile industry and the use of fibres in consumer and engineering applications. Papers may encompass anything in the range of textile activities, from fibre production through textile processes and machines, to the design, marketing and use of products. Papers may also report fundamental theoretical or experimental investigations, including materials science topics in nanotechnology and smart materials, practical or commercial industrial studies and may relate to technical, economic, aesthetic, social or historical aspects of textiles and the textile industry.
All published research articles in The Journal of The Textile Institute have undergone rigorous peer review, based on initial editor screening and anonymized refereeing by two expert referees.