垃圾填埋场生物制氢利用预处理方法初步评价

Q4 Agricultural and Biological Sciences Malaysian applied biology Pub Date : 2023-10-31 DOI:10.55230/mabjournal.v52i4.a052
Nur Sofiya Mohd Fauzi, Nurul 'Azyyati Sabri, Mohd Fazli Farida Asras, Hajar Fauzan Ahmad, Nazira Mahmud
{"title":"垃圾填埋场生物制氢利用预处理方法初步评价","authors":"Nur Sofiya Mohd Fauzi, Nurul 'Azyyati Sabri, Mohd Fazli Farida Asras, Hajar Fauzan Ahmad, Nazira Mahmud","doi":"10.55230/mabjournal.v52i4.a052","DOIUrl":null,"url":null,"abstract":"Landfill waste consists of a mixture of components that have high potential as a substrate for hosting various microorganisms’ growth. Utilizing this waste as a fermentation substrate is seen as an economical solution for the management of the waste. Treating this waste is crucial to remove unnecessary components for the growth of specific organisms to ensure a high reaction yield. Fermentative hydrogen production from this waste specifically requires the hydrogen-consuming bacteria to be reduced. In this work, heat, ultraviolet (UV) radiation, acid, and alkaline pretreatment were conducted on the landfill waste. The changes in the reduced sugar content and appearance of bacterial colonies were observed and compared. Heat pretreatment at 65 °C was found to give among the best increase (74 – 88%) in reducing sugar content and reduction (50 – 85%) in the number of aerobic bacterial colonies detected. Global warming potential and eutrophication potential recorded from simulated heat pretreatment plant was comparable to other heat-based pretreatment reported by other researchers with a potential reduction in severity as the plant size increased.","PeriodicalId":18160,"journal":{"name":"Malaysian applied biology","volume":"339 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary Assessment on Pretreatment Methods For Landfill Waste Utilization in Biohydrogen Production\",\"authors\":\"Nur Sofiya Mohd Fauzi, Nurul 'Azyyati Sabri, Mohd Fazli Farida Asras, Hajar Fauzan Ahmad, Nazira Mahmud\",\"doi\":\"10.55230/mabjournal.v52i4.a052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Landfill waste consists of a mixture of components that have high potential as a substrate for hosting various microorganisms’ growth. Utilizing this waste as a fermentation substrate is seen as an economical solution for the management of the waste. Treating this waste is crucial to remove unnecessary components for the growth of specific organisms to ensure a high reaction yield. Fermentative hydrogen production from this waste specifically requires the hydrogen-consuming bacteria to be reduced. In this work, heat, ultraviolet (UV) radiation, acid, and alkaline pretreatment were conducted on the landfill waste. The changes in the reduced sugar content and appearance of bacterial colonies were observed and compared. Heat pretreatment at 65 °C was found to give among the best increase (74 – 88%) in reducing sugar content and reduction (50 – 85%) in the number of aerobic bacterial colonies detected. Global warming potential and eutrophication potential recorded from simulated heat pretreatment plant was comparable to other heat-based pretreatment reported by other researchers with a potential reduction in severity as the plant size increased.\",\"PeriodicalId\":18160,\"journal\":{\"name\":\"Malaysian applied biology\",\"volume\":\"339 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian applied biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55230/mabjournal.v52i4.a052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian applied biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55230/mabjournal.v52i4.a052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

填埋垃圾由多种成分的混合物组成,这些成分作为承载各种微生物生长的底物具有很高的潜力。利用这些废物作为发酵底物被视为废物管理的经济解决方案。处理这些废物对于去除特定生物生长所需的不必要成分至关重要,以确保高反应产率。从这种废物中发酵制氢特别需要减少耗氢细菌。本文对垃圾填埋场进行了热、紫外、酸、碱预处理。观察并比较了还原糖含量和菌落外观的变化。结果表明,在65℃的温度下进行热处理,可使还原糖含量增加74 ~ 88%,好氧细菌菌落数量减少50 ~ 85%。模拟热预处理工厂记录的全球变暖潜势和富营养化潜势与其他研究人员报道的其他热预处理相当,随着工厂规模的增加,严重程度可能降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary Assessment on Pretreatment Methods For Landfill Waste Utilization in Biohydrogen Production
Landfill waste consists of a mixture of components that have high potential as a substrate for hosting various microorganisms’ growth. Utilizing this waste as a fermentation substrate is seen as an economical solution for the management of the waste. Treating this waste is crucial to remove unnecessary components for the growth of specific organisms to ensure a high reaction yield. Fermentative hydrogen production from this waste specifically requires the hydrogen-consuming bacteria to be reduced. In this work, heat, ultraviolet (UV) radiation, acid, and alkaline pretreatment were conducted on the landfill waste. The changes in the reduced sugar content and appearance of bacterial colonies were observed and compared. Heat pretreatment at 65 °C was found to give among the best increase (74 – 88%) in reducing sugar content and reduction (50 – 85%) in the number of aerobic bacterial colonies detected. Global warming potential and eutrophication potential recorded from simulated heat pretreatment plant was comparable to other heat-based pretreatment reported by other researchers with a potential reduction in severity as the plant size increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Malaysian applied biology
Malaysian applied biology Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
0.60
自引率
0.00%
发文量
69
期刊最新文献
Nodulation and Yields of Soybean (Glycine max L. Merrill) Varieties at Varying Phosphorus Fertilizer Rates in Lafia, Nigeria Ciri Adaptasi Anatomi Daun Bougainvillea spectabilis W. Yang Dijangkiti Virus Bougainvillea chlorotic vein-banding Antibiofilm Efficacy and Mode of Action of Etlingera elatior Extracts Against Staphylococcus aureus An Updated Review of Ethnobotany, Ethnopharmacology, Phytochemistry and Pharmacological Activities of Orthosiphon stamineus Benth Phylogenetic Relationship of Diadema: Emphasis on The Two Distinct Clades of D. Setosum With The Inclusion of Long Spine Black Sea Urchin From Malaysian Borneo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1