基于修正剪切破坏准则的成形极限图预测与验证

IF 4.2 2区 工程技术 Q1 Engineering Chinese Journal of Mechanical Engineering Pub Date : 2023-10-31 DOI:10.1186/s10033-023-00954-x
Haibo Wang, Zipeng Wang, Yu Yan, Yuanhui Xu
{"title":"基于修正剪切破坏准则的成形极限图预测与验证","authors":"Haibo Wang, Zipeng Wang, Yu Yan, Yuanhui Xu","doi":"10.1186/s10033-023-00954-x","DOIUrl":null,"url":null,"abstract":"Abstract The forming limit diagram plays an important role in predicting the forming limit of sheet metals. Previous studies have shown that, the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is effective and simple. The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area. In this study, in order to improve the accuracy of the original shear failure criterion, a modified shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion. The detailed improvement strategies of the shear failure criterion and the complete calculation process are given. Based on the modified shear failure criterion and different constitutive equations, the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated. By comparing the theoretical and experimental results, it is shown that proposed modified shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion. The effect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth. The modified shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction and Verification of Forming Limit Diagrams Based on a Modified Shear Failure Criterion\",\"authors\":\"Haibo Wang, Zipeng Wang, Yu Yan, Yuanhui Xu\",\"doi\":\"10.1186/s10033-023-00954-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The forming limit diagram plays an important role in predicting the forming limit of sheet metals. Previous studies have shown that, the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is effective and simple. The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area. In this study, in order to improve the accuracy of the original shear failure criterion, a modified shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion. The detailed improvement strategies of the shear failure criterion and the complete calculation process are given. Based on the modified shear failure criterion and different constitutive equations, the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated. By comparing the theoretical and experimental results, it is shown that proposed modified shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion. The effect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth. The modified shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.\",\"PeriodicalId\":10115,\"journal\":{\"name\":\"Chinese Journal of Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s10033-023-00954-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00954-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要成形极限图在预测板料成形极限方面起着重要作用。前人的研究表明,基于原剪切破坏准则的失稳理论构建成形极限图的方法是有效且简单的。原剪切失稳判据能准确预测成形极限图的左侧区域,但不能准确预测右侧区域。为了提高原剪切破坏准则的准确性,本研究在对原剪切破坏准则进行深入分析的基础上,提出了一种修正的剪切破坏准则。给出了剪切破坏准则的详细改进策略和完整的计算过程。基于修正的剪切破坏准则和不同的本构方程,计算了TRIP780钢和5754O铝合金板材的理论成形极限。理论与实验结果对比表明,所提出的修正剪切破坏准则比原剪切破坏准则能更合理地预测成形极限的正确区域。并对预应变和本构方程对成形极限的影响进行了深入分析。本文提出的修正剪切破坏准则为预测板料成形极限提供了一种可靠的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction and Verification of Forming Limit Diagrams Based on a Modified Shear Failure Criterion
Abstract The forming limit diagram plays an important role in predicting the forming limit of sheet metals. Previous studies have shown that, the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is effective and simple. The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area. In this study, in order to improve the accuracy of the original shear failure criterion, a modified shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion. The detailed improvement strategies of the shear failure criterion and the complete calculation process are given. Based on the modified shear failure criterion and different constitutive equations, the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated. By comparing the theoretical and experimental results, it is shown that proposed modified shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion. The effect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth. The modified shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
4.80%
发文量
3097
审稿时长
8 months
期刊介绍: Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES). The publishing scopes of CJME follow with: Mechanism and Robotics, including but not limited to -- Innovative Mechanism Design -- Mechanical Transmission -- Robot Structure Design and Control -- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…) -- Tri-Co Robotics Intelligent Manufacturing Technology, including but not limited to -- Innovative Industrial Design -- Intelligent Machining Process -- Artificial Intelligence -- Micro- and Nano-manufacturing -- Material Increasing Manufacturing -- Intelligent Monitoring Technology -- Machine Fault Diagnostics and Prognostics Advanced Transportation Equipment, including but not limited to -- New Energy Vehicle Technology -- Unmanned Vehicle -- Advanced Rail Transportation -- Intelligent Transport System Ocean Engineering Equipment, including but not limited to --Equipment for Deep-sea Exploration -- Autonomous Underwater Vehicle Smart Material, including but not limited to --Special Metal Functional Materials --Advanced Composite Materials --Material Forming Technology.
期刊最新文献
Effect of Ellipsoidal Particle Shape on Tribological Properties of Lubricants Containing Nanoparticles Deployment Dynamic Modeling and Driving Schemes for a Ring-Truss Deployable Antenna Vibration Reduction by a Partitioned Dynamic Vibration Absorber with Acoustic Black Hole Features Path-Dependent Progressive Failure Analysis for 3D-Printed Continuous Carbon Fibre Reinforced Composites Remaining Useful Life for Heavy-Duty Railway Cast Steel Knuckles Based on Crack Growth Behavior with Hypothetical Distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1