T. Fiedler, M. Jähnig Domingues, C. Winter, J. Rösler
{"title":"增材制造用高导电性铜合金","authors":"T. Fiedler, M. Jähnig Domingues, C. Winter, J. Rösler","doi":"10.1007/s40964-023-00527-3","DOIUrl":null,"url":null,"abstract":"Abstract For applications where high thermal and/or electrical conductivity combined with reasonably high strength is required, copper alloys may be used. Although many different alloys were already developed in the past, additive manufacturing like laser powder bed fusion (PBF-LB/M) opens up new possibilities for alloy development, mainly driven by the very high cooling rates. This allows for the usage of precipitation-hardened alloys with compositions exceeding the maximum solubility. The present work focuses on the investigation of a well-known CuCr1Zr alloy as well as CuZr alloys with 1 and 2 wt.% Zr. For a fast, resource-efficient screening and demonstration of feasibility, the investigated alloys were not printed from powder. Instead, solid sheets were partially re-melted in a PBF-LB/M machine to obtain a microstructure similar to the printed state. This rapid-solidification microstructure is investigated, and precipitates with a size 50 nm or even smaller are found. After subsequent aging heat treatments, the hardness of the alloys exceeds the maximum hardness achievable with conventional manufacturing methods (excluding work hardening). The investigations in this work revealed the great hardening potential of these alloys for usage in the PBF-LB/M process.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High conductive copper alloys for additive manufacturing\",\"authors\":\"T. Fiedler, M. Jähnig Domingues, C. Winter, J. Rösler\",\"doi\":\"10.1007/s40964-023-00527-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For applications where high thermal and/or electrical conductivity combined with reasonably high strength is required, copper alloys may be used. Although many different alloys were already developed in the past, additive manufacturing like laser powder bed fusion (PBF-LB/M) opens up new possibilities for alloy development, mainly driven by the very high cooling rates. This allows for the usage of precipitation-hardened alloys with compositions exceeding the maximum solubility. The present work focuses on the investigation of a well-known CuCr1Zr alloy as well as CuZr alloys with 1 and 2 wt.% Zr. For a fast, resource-efficient screening and demonstration of feasibility, the investigated alloys were not printed from powder. Instead, solid sheets were partially re-melted in a PBF-LB/M machine to obtain a microstructure similar to the printed state. This rapid-solidification microstructure is investigated, and precipitates with a size 50 nm or even smaller are found. After subsequent aging heat treatments, the hardness of the alloys exceeds the maximum hardness achievable with conventional manufacturing methods (excluding work hardening). The investigations in this work revealed the great hardening potential of these alloys for usage in the PBF-LB/M process.\",\"PeriodicalId\":36643,\"journal\":{\"name\":\"Progress in Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40964-023-00527-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-023-00527-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
High conductive copper alloys for additive manufacturing
Abstract For applications where high thermal and/or electrical conductivity combined with reasonably high strength is required, copper alloys may be used. Although many different alloys were already developed in the past, additive manufacturing like laser powder bed fusion (PBF-LB/M) opens up new possibilities for alloy development, mainly driven by the very high cooling rates. This allows for the usage of precipitation-hardened alloys with compositions exceeding the maximum solubility. The present work focuses on the investigation of a well-known CuCr1Zr alloy as well as CuZr alloys with 1 and 2 wt.% Zr. For a fast, resource-efficient screening and demonstration of feasibility, the investigated alloys were not printed from powder. Instead, solid sheets were partially re-melted in a PBF-LB/M machine to obtain a microstructure similar to the printed state. This rapid-solidification microstructure is investigated, and precipitates with a size 50 nm or even smaller are found. After subsequent aging heat treatments, the hardness of the alloys exceeds the maximum hardness achievable with conventional manufacturing methods (excluding work hardening). The investigations in this work revealed the great hardening potential of these alloys for usage in the PBF-LB/M process.
期刊介绍:
Progress in Additive Manufacturing promotes highly scored scientific investigations from academia, government and industry R&D activities. The journal publishes the advances in the processing of different kinds of materials by well-established and new Additive Manufacturing (AM) technologies. Manuscripts showing the progress in the processing and development of multi-materials by hybrid additive manufacturing or by the combination of additive and subtractive manufacturing technologies are also welcome. Progress in Additive Manufacturing serves as a platform for scientists to contribute full papers as well as review articles and short communications analyzing aspects ranging from data processing (new design tools, data formats), simulation, materials (ceramic, metals, polymers, composites, biomaterials and multi-materials), microstructure development, new AM processes or combination of processes (e.g. additive and subtractive, hybrid, multi-steps), parameter and process optimization, new testing methods for AM parts and process monitoring. The journal welcomes manuscripts in several AM topics, including: • Design tools and data format • Material aspects and new developments • Multi-material and composites • Microstructure evolution of AM parts • Optimization of existing processes • Development of new techniques and processing strategies (combination subtractive and additive methods, hybrid processes) • Integration with conventional manufacturing techniques • Innovative applications of AM parts (for tooling, high temperature or high performance applications) • Process monitoring and non-destructive testing of AM parts • Speed-up strategies for AM processes • New test methods and special features of AM parts