无线电折射对移动通信信号强度的影响

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Electrical and Computer Engineering Pub Date : 2023-10-31 DOI:10.1155/2023/3052241
Joseph Amajama, Emmanuel N. Asagha, Ogri J. Ushie, Prince C. Iwuji, Julius U. Akwagiobe, Fina O. Faithpraise, Alexander I. Ikeuba, Donatus E. Bassey
{"title":"无线电折射对移动通信信号强度的影响","authors":"Joseph Amajama, Emmanuel N. Asagha, Ogri J. Ushie, Prince C. Iwuji, Julius U. Akwagiobe, Fina O. Faithpraise, Alexander I. Ikeuba, Donatus E. Bassey","doi":"10.1155/2023/3052241","DOIUrl":null,"url":null,"abstract":"This research investigated radio refractivity impact on signal strength of mobile communication. The mobile communication signal strengths of two popular networks in Nigeria, 9Mobile and MTN, were considered. In the 2100 MHz-3 G band, 9Mobile transmits in the downlink spectrum of 2130.00–2140.00 MHz, while MTN transmits in the downlink spectrum of 2110.00–2120.00 MHz. Also, 9Mobile transmits in the downlink spectrum of 791–821 MHz in the 800 MHz band and 1805–1880 MHz in the 1800 MHz, while MTN transmits in the downlink spectrums of 2620–2690 MHz in the 2600 MHz band; all in the 4 G band. Using the instrument of a mobile station in each station (location) in some selected cities in southern Nigeria, the signal strengths were measured. A cell signal monitor (version 5.1.1) mobile application installed in an Android (transceiver) device (having two SIM slots) constituted the mobile station. To achieve high accuracy, there was a restriction in measuring transmission from specific cells. Hourly measurement of signal strengths was carried out and instantaneously corresponding weather parameters were recorded. Weather parameters for this investigation; atmospheric temperature and pressure; and relative humidity were excerpted online from the Nigeria Meteorological Agency (NIMET) hourly weather report for the various cities where the stations were situated. The hourly radio refractivity was computed using the 2015 International Telecommunication Union–Radio-communication sector (ITU-R) recommended model. Overall, the results indicate that there was no established linear relationship between signal strength and radio refractivity since the overall average R value is 0.0123691 and the overall average standard deviation of R values is 0.1112165. The inconsistencies in the linear relationships obtained from different locations and cells could be due to variations in topography, antenna properties, seasonal variations, wind and position, and distance of the receiver from the transmitter.","PeriodicalId":46573,"journal":{"name":"Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radio Refractivity Impact on Signal Strength of Mobile Communication\",\"authors\":\"Joseph Amajama, Emmanuel N. Asagha, Ogri J. Ushie, Prince C. Iwuji, Julius U. Akwagiobe, Fina O. Faithpraise, Alexander I. Ikeuba, Donatus E. Bassey\",\"doi\":\"10.1155/2023/3052241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigated radio refractivity impact on signal strength of mobile communication. The mobile communication signal strengths of two popular networks in Nigeria, 9Mobile and MTN, were considered. In the 2100 MHz-3 G band, 9Mobile transmits in the downlink spectrum of 2130.00–2140.00 MHz, while MTN transmits in the downlink spectrum of 2110.00–2120.00 MHz. Also, 9Mobile transmits in the downlink spectrum of 791–821 MHz in the 800 MHz band and 1805–1880 MHz in the 1800 MHz, while MTN transmits in the downlink spectrums of 2620–2690 MHz in the 2600 MHz band; all in the 4 G band. Using the instrument of a mobile station in each station (location) in some selected cities in southern Nigeria, the signal strengths were measured. A cell signal monitor (version 5.1.1) mobile application installed in an Android (transceiver) device (having two SIM slots) constituted the mobile station. To achieve high accuracy, there was a restriction in measuring transmission from specific cells. Hourly measurement of signal strengths was carried out and instantaneously corresponding weather parameters were recorded. Weather parameters for this investigation; atmospheric temperature and pressure; and relative humidity were excerpted online from the Nigeria Meteorological Agency (NIMET) hourly weather report for the various cities where the stations were situated. The hourly radio refractivity was computed using the 2015 International Telecommunication Union–Radio-communication sector (ITU-R) recommended model. Overall, the results indicate that there was no established linear relationship between signal strength and radio refractivity since the overall average R value is 0.0123691 and the overall average standard deviation of R values is 0.1112165. The inconsistencies in the linear relationships obtained from different locations and cells could be due to variations in topography, antenna properties, seasonal variations, wind and position, and distance of the receiver from the transmitter.\",\"PeriodicalId\":46573,\"journal\":{\"name\":\"Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3052241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3052241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了无线电折射对移动通信信号强度的影响。考虑了尼日利亚两个流行网络9Mobile和MTN的移动通信信号强度。在2100 MHz- 3g频段,9Mobile的下行频谱为2130.0 - 2140.00 MHz, MTN的下行频谱为2110.00-2120.00 MHz。9Mobile在800mhz频段下行频谱791 - 821mhz,在1800mhz频段下行频谱1805-1880 MHz, MTN在2600mhz频段下行频谱2620 - 2690mhz;都在4g频段。利用尼日利亚南部一些选定城市的每个移动站(地点)的移动站的仪器,测量了信号强度。安装在Android(收发器)设备(有两个SIM卡槽)上的手机信号监视器(版本5.1.1)移动应用程序构成移动站。为了达到高精度,在测量特定细胞的传输时有限制。每小时测量一次信号强度,并即时记录相应的天气参数。本次调查的天气参数;大气温度和压力;和相对湿度是从尼日利亚气象局(NIMET)的每小时天气报告中摘录的,这些报告是针对气象站所在的各个城市的。每小时无线电折射率是使用2015年国际电信联盟-无线电通信部门(ITU-R)推荐的模型计算的。总体而言,结果表明信号强度与射电折射率之间没有建立线性关系,总体平均R值为0.0123691,R值的总体平均标准差为0.1112165。从不同位置和小区获得的线性关系的不一致可能是由于地形变化、天线特性、季节变化、风和位置以及接收机与发射机的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radio Refractivity Impact on Signal Strength of Mobile Communication
This research investigated radio refractivity impact on signal strength of mobile communication. The mobile communication signal strengths of two popular networks in Nigeria, 9Mobile and MTN, were considered. In the 2100 MHz-3 G band, 9Mobile transmits in the downlink spectrum of 2130.00–2140.00 MHz, while MTN transmits in the downlink spectrum of 2110.00–2120.00 MHz. Also, 9Mobile transmits in the downlink spectrum of 791–821 MHz in the 800 MHz band and 1805–1880 MHz in the 1800 MHz, while MTN transmits in the downlink spectrums of 2620–2690 MHz in the 2600 MHz band; all in the 4 G band. Using the instrument of a mobile station in each station (location) in some selected cities in southern Nigeria, the signal strengths were measured. A cell signal monitor (version 5.1.1) mobile application installed in an Android (transceiver) device (having two SIM slots) constituted the mobile station. To achieve high accuracy, there was a restriction in measuring transmission from specific cells. Hourly measurement of signal strengths was carried out and instantaneously corresponding weather parameters were recorded. Weather parameters for this investigation; atmospheric temperature and pressure; and relative humidity were excerpted online from the Nigeria Meteorological Agency (NIMET) hourly weather report for the various cities where the stations were situated. The hourly radio refractivity was computed using the 2015 International Telecommunication Union–Radio-communication sector (ITU-R) recommended model. Overall, the results indicate that there was no established linear relationship between signal strength and radio refractivity since the overall average R value is 0.0123691 and the overall average standard deviation of R values is 0.1112165. The inconsistencies in the linear relationships obtained from different locations and cells could be due to variations in topography, antenna properties, seasonal variations, wind and position, and distance of the receiver from the transmitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical and Computer Engineering
Journal of Electrical and Computer Engineering COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.20
自引率
0.00%
发文量
152
审稿时长
19 weeks
期刊最新文献
Network Intrusion Detection Using Knapsack Optimization, Mutual Information Gain, and Machine Learning Electronically Tunable Grounded and Floating Capacitance Multipliers Using a Single Active Element A Novel Technique for Facial Recognition Based on the GSO-CNN Deep Learning Algorithm Simulation Analysis of Arc-Quenching Performance of Eco-Friendly Insulating Gas Mixture of CF3I and CO2 under Impulse Arc Balancing Data Privacy and 5G VNFs Security Monitoring: Federated Learning with CNN + BiLSTM + LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1