从第一届Ariel机器学习挑战中吸取的教训:纠正恒星黑子的凌日系外行星光曲线

Nikolaos Nikolaou, Ingo P. Waldmann, Angelos Tsiaras, Mario Morvan, Billy Edwards, Kai Hou Yip, Giovanna Tinetti, Subhajit Sarkar, James M. Dawson, Vadim Borisov, Gjergji Kasneci, Matej Petkovic, Tomaz Stepisnik, Tarek Al-Ubaidi, Rachel Louise Bailey, Michael Granitzer, Sahib Julka, Roman Kern, Patrick Ofner, Stefan Wagner, Lukas Heppe, Mirko Bunse, Katharina Morik
{"title":"从第一届Ariel机器学习挑战中吸取的教训:纠正恒星黑子的凌日系外行星光曲线","authors":"Nikolaos Nikolaou, Ingo P. Waldmann, Angelos Tsiaras, Mario Morvan, Billy Edwards, Kai Hou Yip, Giovanna Tinetti, Subhajit Sarkar, James M. Dawson, Vadim Borisov, Gjergji Kasneci, Matej Petkovic, Tomaz Stepisnik, Tarek Al-Ubaidi, Rachel Louise Bailey, Michael Granitzer, Sahib Julka, Roman Kern, Patrick Ofner, Stefan Wagner, Lukas Heppe, Mirko Bunse, Katharina Morik","doi":"10.1093/rasti/rzad050","DOIUrl":null,"url":null,"abstract":"Abstract The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The primary focus of the paper is to present in detail a diverse arsenal of methods for doing so. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency’s upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing –deep neural networks and ensemble methods– or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance.","PeriodicalId":500957,"journal":{"name":"RAS Techniques and Instruments","volume":"19 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Lessons learned from the 1st Ariel Machine Learning Challenge: Correcting transiting exoplanet light curves for stellar spots\",\"authors\":\"Nikolaos Nikolaou, Ingo P. Waldmann, Angelos Tsiaras, Mario Morvan, Billy Edwards, Kai Hou Yip, Giovanna Tinetti, Subhajit Sarkar, James M. Dawson, Vadim Borisov, Gjergji Kasneci, Matej Petkovic, Tomaz Stepisnik, Tarek Al-Ubaidi, Rachel Louise Bailey, Michael Granitzer, Sahib Julka, Roman Kern, Patrick Ofner, Stefan Wagner, Lukas Heppe, Mirko Bunse, Katharina Morik\",\"doi\":\"10.1093/rasti/rzad050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The primary focus of the paper is to present in detail a diverse arsenal of methods for doing so. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency’s upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing –deep neural networks and ensemble methods– or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance.\",\"PeriodicalId\":500957,\"journal\":{\"name\":\"RAS Techniques and Instruments\",\"volume\":\"19 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAS Techniques and Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/rasti/rzad050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rasti/rzad050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在过去的十年里,系外行星的发现和表征领域得到了快速发展。然而,仍然存在一些重大挑战,其中许多可以使用机器学习方法来解决。例如,探测系外行星并推断其特征的最有效方法是凌日光度法,它对恒星黑子的存在非常敏感。目前文献中的做法是直观地识别斑点的影响,并手动对其进行校正或丢弃受影响的数据。本文探索了在存在恒星黑子的情况下,从凌日光曲线中高效精确地推导凌日深度的完全自动化的第一步。本文的主要重点是详细介绍实现这一目标的各种方法。我们提出的方法和结果是在为欧洲航天局即将到来的Ariel任务组织的第一次机器学习挑战赛的背景下获得的。我们首先提出了问题,模拟了类似ariel的数据,并概述了挑战,同时确定了未来组织类似挑战的最佳实践。最后,我们展示了前5名获胜团队获得的解决方案,提供了他们的代码并讨论了它们的含义。成功的解决方案要么用最少的预处理(深度神经网络和集成方法)构建高度非线性(原始数据)模型,要么从光曲线中获得有意义的统计数据,构建线性模型,在此基础上产生相对较好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lessons learned from the 1st Ariel Machine Learning Challenge: Correcting transiting exoplanet light curves for stellar spots
Abstract The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The primary focus of the paper is to present in detail a diverse arsenal of methods for doing so. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency’s upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing –deep neural networks and ensemble methods– or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The exosphere of Mars can be tracked by a high-spectral resolution telescope, such as the Line Emission Mapper Training a convolutional neural network for real-bogus classification in the ATLAS survey Exoplanet host star classification: Multi-Objective Optimisation of incomplete stellar abundance data PTFE as a viable sealing material for lightweight mass spectrometry ovens in dusty extraterrestrial environments PTFE as a viable sealing material for lightweight mass spectrometry ovens in dusty extraterrestrial environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1