{"title":"水苔覆盖对孟加拉国南部热带生态系统草莓产量和理化特性的影响","authors":"Joydeb Gomasta, Md. Rashedul Islam, Md. Alimur Rahman, Monirul Islam, Pronita Mondal, Jahidul Hassan, Emrul Kayesh","doi":"10.47836/pjtas.46.4.14","DOIUrl":null,"url":null,"abstract":"Strawberry is one of the most lucrative antioxidants and phytochemicals enriched temperate fruits. Nevertheless, good-quality fruit production requires special soil management practices like mulching and other strategies in tropical and sub-tropical regimes with short and dry winters. In the present research, strawberry var. BARI Strawberry-3 was cultivated using Asian watermoss (AW), water hyacinth (WH), paddy straw (PS), black polythene (BP), and silver polythene (SP) mulching along with control at the tropical weather-inclined southern part of Bangladesh from October 2018 to April 2019. The aim was to evaluate the comparative influences of those organic and synthetic mulches on root and shoot growth phenology along with subsequent reproductive behaviors, fruit yield, and fruit biochemical properties of strawberries under such an ecosystem. The experiment was conducted in a randomized complete block design with four replications. Mulching exhibited statistical superiority over control for strawberry growth, yield, and fruit quality indicators, where organic mulches performed better than others. Among the mulches, AW mulching produced the healthiest plant, having maximum plant height (20.40 cm), leaf number (23.33 per plant), canopy diameter (34.30 cm), single leaf area (100.06 cm2), and root length (19.05 cm) resulting in the highest root and shoot biomass. Though the plants received AW mulch required maximum duration from transplanting to flowering (47.88 days) and flowering to harvest (29.60 days), those plants produced the highest number of flowers (21.20 per plant) as well as fruits (19.63 per plant), and ultimately the utmost fruit yield (370.02 g/plant and 15.42 kg/ha) being significantly dissonant from all other treatments. Thus, a 57.57% yield increase over control was recorded from AW mulching. Furthermore, statistically, the maximum total soluble solids (TSS) (9.93%), TSS/acidity ratio (17.37), and vitamin C (58.30 mg/100 g), but the minimum titratable acidity (0.57%) content of strawberry was noticed in AW treatment. WH and BP mulches had statistical consistency with the best treatment for a few attributes. Therefore, crop residues, aquatic plants, or their by-products can be used as mulch for quality strawberry production in dry winter, especially in tropical and subtropical regions.","PeriodicalId":19890,"journal":{"name":"Pertanika Journal of Tropical Agricultural Science","volume":"34 7","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Watermoss Mulching Stimulates the Productivity and Physiochemical Properties of Strawberry in the Tropical Ecosystem of Southern Bangladesh\",\"authors\":\"Joydeb Gomasta, Md. Rashedul Islam, Md. Alimur Rahman, Monirul Islam, Pronita Mondal, Jahidul Hassan, Emrul Kayesh\",\"doi\":\"10.47836/pjtas.46.4.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strawberry is one of the most lucrative antioxidants and phytochemicals enriched temperate fruits. Nevertheless, good-quality fruit production requires special soil management practices like mulching and other strategies in tropical and sub-tropical regimes with short and dry winters. In the present research, strawberry var. BARI Strawberry-3 was cultivated using Asian watermoss (AW), water hyacinth (WH), paddy straw (PS), black polythene (BP), and silver polythene (SP) mulching along with control at the tropical weather-inclined southern part of Bangladesh from October 2018 to April 2019. The aim was to evaluate the comparative influences of those organic and synthetic mulches on root and shoot growth phenology along with subsequent reproductive behaviors, fruit yield, and fruit biochemical properties of strawberries under such an ecosystem. The experiment was conducted in a randomized complete block design with four replications. Mulching exhibited statistical superiority over control for strawberry growth, yield, and fruit quality indicators, where organic mulches performed better than others. Among the mulches, AW mulching produced the healthiest plant, having maximum plant height (20.40 cm), leaf number (23.33 per plant), canopy diameter (34.30 cm), single leaf area (100.06 cm2), and root length (19.05 cm) resulting in the highest root and shoot biomass. Though the plants received AW mulch required maximum duration from transplanting to flowering (47.88 days) and flowering to harvest (29.60 days), those plants produced the highest number of flowers (21.20 per plant) as well as fruits (19.63 per plant), and ultimately the utmost fruit yield (370.02 g/plant and 15.42 kg/ha) being significantly dissonant from all other treatments. Thus, a 57.57% yield increase over control was recorded from AW mulching. Furthermore, statistically, the maximum total soluble solids (TSS) (9.93%), TSS/acidity ratio (17.37), and vitamin C (58.30 mg/100 g), but the minimum titratable acidity (0.57%) content of strawberry was noticed in AW treatment. WH and BP mulches had statistical consistency with the best treatment for a few attributes. Therefore, crop residues, aquatic plants, or their by-products can be used as mulch for quality strawberry production in dry winter, especially in tropical and subtropical regions.\",\"PeriodicalId\":19890,\"journal\":{\"name\":\"Pertanika Journal of Tropical Agricultural Science\",\"volume\":\"34 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Tropical Agricultural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjtas.46.4.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Tropical Agricultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjtas.46.4.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Watermoss Mulching Stimulates the Productivity and Physiochemical Properties of Strawberry in the Tropical Ecosystem of Southern Bangladesh
Strawberry is one of the most lucrative antioxidants and phytochemicals enriched temperate fruits. Nevertheless, good-quality fruit production requires special soil management practices like mulching and other strategies in tropical and sub-tropical regimes with short and dry winters. In the present research, strawberry var. BARI Strawberry-3 was cultivated using Asian watermoss (AW), water hyacinth (WH), paddy straw (PS), black polythene (BP), and silver polythene (SP) mulching along with control at the tropical weather-inclined southern part of Bangladesh from October 2018 to April 2019. The aim was to evaluate the comparative influences of those organic and synthetic mulches on root and shoot growth phenology along with subsequent reproductive behaviors, fruit yield, and fruit biochemical properties of strawberries under such an ecosystem. The experiment was conducted in a randomized complete block design with four replications. Mulching exhibited statistical superiority over control for strawberry growth, yield, and fruit quality indicators, where organic mulches performed better than others. Among the mulches, AW mulching produced the healthiest plant, having maximum plant height (20.40 cm), leaf number (23.33 per plant), canopy diameter (34.30 cm), single leaf area (100.06 cm2), and root length (19.05 cm) resulting in the highest root and shoot biomass. Though the plants received AW mulch required maximum duration from transplanting to flowering (47.88 days) and flowering to harvest (29.60 days), those plants produced the highest number of flowers (21.20 per plant) as well as fruits (19.63 per plant), and ultimately the utmost fruit yield (370.02 g/plant and 15.42 kg/ha) being significantly dissonant from all other treatments. Thus, a 57.57% yield increase over control was recorded from AW mulching. Furthermore, statistically, the maximum total soluble solids (TSS) (9.93%), TSS/acidity ratio (17.37), and vitamin C (58.30 mg/100 g), but the minimum titratable acidity (0.57%) content of strawberry was noticed in AW treatment. WH and BP mulches had statistical consistency with the best treatment for a few attributes. Therefore, crop residues, aquatic plants, or their by-products can be used as mulch for quality strawberry production in dry winter, especially in tropical and subtropical regions.