{"title":"砖粉比表面积对砂浆混合物中水泥替代的影响:建筑业可持续和经济有效的解决方案","authors":"Somaya Ben Abbou, Issam Aalil, Khalid Cherkaoui","doi":"10.3311/ppci.22643","DOIUrl":null,"url":null,"abstract":"This study examined the use of clay brick powder (CBP) as a partial substitute for cement in mortar mixes. Five mixes were tested, each differing by the fineness of the CBP, obtained by grinding brick waste for different durations (30, 60, 90, 120 minutes). Several parameters were evaluated; apparent density, porosity, spread, ultrasonic pulse velocity (UPV), flexural and compressive strength, and the pozzolanic activity index. The results indicate that, when the brick powder is ground for 60 minutes, the spread of the mortar exceeds 95% compared to the reference mortar. The addition of CBP appears to increase the water absorption and porosity of the mortars, without significantly influencing their apparent density. Most samples have a UPV close to 4000m/s, attesting to satisfactory mechanical properties. The use of 20% CBP in replacement of cement leads to a decrease in flexural strength. However, this drop is less when the specific surface area of the CBP is close to that of cement. As for compressive strength, a decrease is also noted with the introduction of CBP, but this decrease can be mitigated by using CBP with a specific surface area similar to that of cement. These factors can significantly influence the pozzolanic activity of the mortar mix. Furthermore, our investigations into environmental and economic analyses show that the use of cement mixes including CBP results in a significant decrease in energy consumption and CO2 emissions. More specifically, the replacement of 20% of cement with CBP of different granulometries has led to promising results.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Brick Powder Specific Surface Area on Cement Replacement in Mortar Mixes: A Sustainable and Cost-effective Solution for the Construction Industry\",\"authors\":\"Somaya Ben Abbou, Issam Aalil, Khalid Cherkaoui\",\"doi\":\"10.3311/ppci.22643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the use of clay brick powder (CBP) as a partial substitute for cement in mortar mixes. Five mixes were tested, each differing by the fineness of the CBP, obtained by grinding brick waste for different durations (30, 60, 90, 120 minutes). Several parameters were evaluated; apparent density, porosity, spread, ultrasonic pulse velocity (UPV), flexural and compressive strength, and the pozzolanic activity index. The results indicate that, when the brick powder is ground for 60 minutes, the spread of the mortar exceeds 95% compared to the reference mortar. The addition of CBP appears to increase the water absorption and porosity of the mortars, without significantly influencing their apparent density. Most samples have a UPV close to 4000m/s, attesting to satisfactory mechanical properties. The use of 20% CBP in replacement of cement leads to a decrease in flexural strength. However, this drop is less when the specific surface area of the CBP is close to that of cement. As for compressive strength, a decrease is also noted with the introduction of CBP, but this decrease can be mitigated by using CBP with a specific surface area similar to that of cement. These factors can significantly influence the pozzolanic activity of the mortar mix. Furthermore, our investigations into environmental and economic analyses show that the use of cement mixes including CBP results in a significant decrease in energy consumption and CO2 emissions. More specifically, the replacement of 20% of cement with CBP of different granulometries has led to promising results.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.22643\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppci.22643","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
The Impact of Brick Powder Specific Surface Area on Cement Replacement in Mortar Mixes: A Sustainable and Cost-effective Solution for the Construction Industry
This study examined the use of clay brick powder (CBP) as a partial substitute for cement in mortar mixes. Five mixes were tested, each differing by the fineness of the CBP, obtained by grinding brick waste for different durations (30, 60, 90, 120 minutes). Several parameters were evaluated; apparent density, porosity, spread, ultrasonic pulse velocity (UPV), flexural and compressive strength, and the pozzolanic activity index. The results indicate that, when the brick powder is ground for 60 minutes, the spread of the mortar exceeds 95% compared to the reference mortar. The addition of CBP appears to increase the water absorption and porosity of the mortars, without significantly influencing their apparent density. Most samples have a UPV close to 4000m/s, attesting to satisfactory mechanical properties. The use of 20% CBP in replacement of cement leads to a decrease in flexural strength. However, this drop is less when the specific surface area of the CBP is close to that of cement. As for compressive strength, a decrease is also noted with the introduction of CBP, but this decrease can be mitigated by using CBP with a specific surface area similar to that of cement. These factors can significantly influence the pozzolanic activity of the mortar mix. Furthermore, our investigations into environmental and economic analyses show that the use of cement mixes including CBP results in a significant decrease in energy consumption and CO2 emissions. More specifically, the replacement of 20% of cement with CBP of different granulometries has led to promising results.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.