{"title":"测定精油-向日葵蜡和蜂蜡油凝胶的结构和稳定性","authors":"Hatice Çokay, Mustafa Öğütcü","doi":"10.1002/aocs.12745","DOIUrl":null,"url":null,"abstract":"<p>In this study, essential oil oleogels were produced using eucalyptus, lavender, lemon peel and tea tree oils with sunflower and beeswax. The physicochemical, thermal, textural, and structural features of the oleogels were determined. For the essential oils used, an addition level of less than 15% of beeswax (BW) was insufficient to form stable oleogels, whereas an addition level of 10% of sunflower wax (SW) was sufficient to form stable oleogels. The acid and peroxide values of the gels were higher than those of the oils. All of the oleogels exhibited peaks around 3.70 and 4.10, indicating the presence of <i>β</i>' polymorphic forms. The hardness and stickiness values of the oleogels were influenced by the type and level of wax addition, as well as the viscosity of the oil used. Based on the thermal analysis results, the oleogels based on beeswax exhibited lower melting properties compared to those based on sunflower wax. The thermogravimetric data indicated that the polymeric matrices formed by the waxes, which depended on the type and level of wax addition, affected the vaporization of the volatiles. In conclusion, oleogels represent a green and sustainable approach for reducing the loss of volatile or bioactive compounds from various essential oils, which are widely used in the food, cosmetics, and pharmaceutical industries.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the structure and stability of essential oil-sunflower wax and beeswax oleogels\",\"authors\":\"Hatice Çokay, Mustafa Öğütcü\",\"doi\":\"10.1002/aocs.12745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, essential oil oleogels were produced using eucalyptus, lavender, lemon peel and tea tree oils with sunflower and beeswax. The physicochemical, thermal, textural, and structural features of the oleogels were determined. For the essential oils used, an addition level of less than 15% of beeswax (BW) was insufficient to form stable oleogels, whereas an addition level of 10% of sunflower wax (SW) was sufficient to form stable oleogels. The acid and peroxide values of the gels were higher than those of the oils. All of the oleogels exhibited peaks around 3.70 and 4.10, indicating the presence of <i>β</i>' polymorphic forms. The hardness and stickiness values of the oleogels were influenced by the type and level of wax addition, as well as the viscosity of the oil used. Based on the thermal analysis results, the oleogels based on beeswax exhibited lower melting properties compared to those based on sunflower wax. The thermogravimetric data indicated that the polymeric matrices formed by the waxes, which depended on the type and level of wax addition, affected the vaporization of the volatiles. In conclusion, oleogels represent a green and sustainable approach for reducing the loss of volatile or bioactive compounds from various essential oils, which are widely used in the food, cosmetics, and pharmaceutical industries.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12745\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12745","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Determining the structure and stability of essential oil-sunflower wax and beeswax oleogels
In this study, essential oil oleogels were produced using eucalyptus, lavender, lemon peel and tea tree oils with sunflower and beeswax. The physicochemical, thermal, textural, and structural features of the oleogels were determined. For the essential oils used, an addition level of less than 15% of beeswax (BW) was insufficient to form stable oleogels, whereas an addition level of 10% of sunflower wax (SW) was sufficient to form stable oleogels. The acid and peroxide values of the gels were higher than those of the oils. All of the oleogels exhibited peaks around 3.70 and 4.10, indicating the presence of β' polymorphic forms. The hardness and stickiness values of the oleogels were influenced by the type and level of wax addition, as well as the viscosity of the oil used. Based on the thermal analysis results, the oleogels based on beeswax exhibited lower melting properties compared to those based on sunflower wax. The thermogravimetric data indicated that the polymeric matrices formed by the waxes, which depended on the type and level of wax addition, affected the vaporization of the volatiles. In conclusion, oleogels represent a green and sustainable approach for reducing the loss of volatile or bioactive compounds from various essential oils, which are widely used in the food, cosmetics, and pharmaceutical industries.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.